Abstract
The T-invariance condition was analyzed for the amplitude T b,a of multiparticle multistep elastic or inelastic a → b nuclear reactions. This condition leads to the equality of the amplitude T b,a to the amplitude \({\tilde T_{\bar a,\bar b}}\) of \(\bar b \to \bar a\) time-reversed reaction, for which the reaction operator \(\tilde T\) coincides with the inverse-reaction (b → a) operator. It is shown that, in the case where the original, inverse, and time-reversed reactions are governed by a common T-invariant mechanism, the coefficients D of asymmetries appearing in the differential cross sections for these reactions can be represented in the form of a unified scalar (pseudoscalar) function of arguments equal to the momentum and spin vectors of particles of the initial and final channels of the reactions under analysis. It is also shown that the use of the T-invariance condition for the coefficients D of asymmetries in the differential cross section for the original nuclear reaction that are different in P- and T-parity makes it possible to separate mechanisms leading to nonzero coefficients D for a number of the asymmetries under analysis from the remaining mechanisms leading to zero coefficients D of these asymmetries. It is proven that there exist such asymmetries in the differential cross section for the original reaction whose coefficients vanish for all possible T-invariant mechanisms of their appearance, so that, upon proving experimentally the appearance of nonzero coefficients of these asymmetries in the differential cross section for the original reaction, this fact can be used to assess features of T-noninvariant interactions in nuclear systems.
Similar content being viewed by others
References
E. P. Wigner, Gottingen Nachr. 51, 546 (1932).
M. Goldberger and K. Watson, Collision Theory (Wiley, New York, 1964; Mir, Moscow, 1967).
A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. 1: Single-Particle Motion, (Benjamin, New York, 1969).
S. G. Kadmensky and P. V. Kostryukov, Phys. At. Nucl. 79, 786 (2016).
S. G. Kadmensky and P. V. Kostryukov, Bull. Russ. Acad. Sci.: Phys. 80, 933 (2016).
B. A. Lippmann and J. Shwinger, Phys. Rev. 79, 469 (1950).
M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398 (1953).
A. S. Davydov, Theory of the Nucleus (Fizmatlit, Moscow, 1958).
G. A. Petrov et al., Nucl. Phys. A 502, 297 (1989).
P. Jesinger et al., Nucl. Instrum. Methods Phys. Res. A 440, 618 (2000).
M. Mutterer and J. Theobald, Nuclear DecayModes (Inst. Phys., Bristol, 1996), Chap. 12.
G. V. Danilyan et al., JETP Lett. 26, 186 (1977).
A. K. Petukhov et al., JETP Lett. 30, 439 (1979).
V. A. Vesna et al., JETP Lett. 31, 663 (1980).
A. Ya. Alexandrovich, A. M. Gagarski, I. A. Krasnoschekova, et al., Nucl.Phys. A 567, 541 (1994).
V. N. Andreev et al., JETP Lett. 28, 50 (1978).
P. Jesinger, A. Kötzle, F. Gönnenwein, M. Mutterer, J. von Kalben, G. V. Danilyan, V. S. Pavlov, G. A. Petrov, A. M. Gagarski, W. H. Trzaska, S. M. Soloviev, V. V. Nesvizhevski, and O. Zimmer, Phys. At. Nucl. 65, 630 (2002).
F. Goennenwein et al., Phys. Lett. B 652, 13 (2007).
G. V. Danilyan et al., in Proceeding of the ISINN-16, Dubna, Russia, 2008 (JINR, Dubna, 2008), p. 111.
G. V. Danilyan, J. Klenke, V. A. Krakhotin, V. V. Novitsky, V. S. Pavlov, and P. B. Shatalov, Phys. At. Nucl. 73, 1116 (2010).
S. G. Kadmensky, Phys. At. Nucl. 67, 170 (2004).
S. G. Kadmensky, L. V. Titova, D. E. Lyubashevsky, Bull. Russ.Acad. Sci.: Phys. 78, 383 (2014).
S. G. Kadmensky, V. E. Bunakov and L. V. Titova, Bull. Russ. Acad. Sci. Phys. 76, 942 (2012).
S. G. Kadmensky, L. V. Titova, and N. O. Dronov, Bull. Russ.Acad. Sci.: Phys. 77, 424 (2013).
O. P. Sushkov and V. V. Flambaum, Sov. Phys. Usp. 25, 1 (1982).
V. E. Bunakov and S. G. Kadmensky, Phys. At. Nucl. 66, 1846 (2003).
S. G. Kadmensky, S. S. Kadmensky, and D. E. Lyubashevsky, Phys. At. Nucl. 73, 1436 (2010).
A. L. Barabanov, Symmetry and Spin–Angular Correlations in Reactions and Decays (Fizmatlit, Moscow, 2010) [in Russian].
S. G. Kadmensky, L. V. Titova, and A. O. Bulychev, Phys. At. Nucl. 78, 672 (2015).
O. Tanimura and T. Fliessbach, Z. Phys. A 328, 475 (1987).
P. K. Kabir, Phys. Rev. D 25, 2013 (1982).
L. Stodolsky, Nucl. Phys. B 197, 213 (1982).
A. L. Barabanov, Sov. J. Nucl. Phys. 44, 755 (1986).
A. L. Barabanov, Nucl. Phys. A 614, 1 (1997).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © S.G. Kadmensky, P.V. Kostryukov, 2017, published in Yadernaya Fizika, 2017, Vol. 80, No. 5, pp. 491–499.
Rights and permissions
About this article
Cite this article
Kadmensky, S.G., Kostryukov, P.V. Relationship between T-invariance and formation mechanisms for T-odd and T-even asymmetries in the angular distributions of fission fragments of oriented nuclei. Phys. Atom. Nuclei 80, 895–902 (2017). https://doi.org/10.1134/S1063778817050131
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063778817050131