Physics of Atomic Nuclei

, Volume 80, Issue 5, pp 895–902 | Cite as

Relationship between T-invariance and formation mechanisms for T-odd and T-even asymmetries in the angular distributions of fission fragments of oriented nuclei

Proceedings of LXVI International Conference on Nuclear Spectroscopy and Atomic Nuclei Structure October 11–14, 2016, Sarov, Russia/Nuclei Theory
  • 27 Downloads

Abstract

The T-invariance condition was analyzed for the amplitude T b,a of multiparticle multistep elastic or inelastic ab nuclear reactions. This condition leads to the equality of the amplitude T b,a to the amplitude \({\tilde T_{\bar a,\bar b}}\) of \(\bar b \to \bar a\) time-reversed reaction, for which the reaction operator \(\tilde T\) coincides with the inverse-reaction (ba) operator. It is shown that, in the case where the original, inverse, and time-reversed reactions are governed by a common T-invariant mechanism, the coefficients D of asymmetries appearing in the differential cross sections for these reactions can be represented in the form of a unified scalar (pseudoscalar) function of arguments equal to the momentum and spin vectors of particles of the initial and final channels of the reactions under analysis. It is also shown that the use of the T-invariance condition for the coefficients D of asymmetries in the differential cross section for the original nuclear reaction that are different in P- and T-parity makes it possible to separate mechanisms leading to nonzero coefficients D for a number of the asymmetries under analysis from the remaining mechanisms leading to zero coefficients D of these asymmetries. It is proven that there exist such asymmetries in the differential cross section for the original reaction whose coefficients vanish for all possible T-invariant mechanisms of their appearance, so that, upon proving experimentally the appearance of nonzero coefficients of these asymmetries in the differential cross section for the original reaction, this fact can be used to assess features of T-noninvariant interactions in nuclear systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. P. Wigner, Gottingen Nachr. 51, 546 (1932).Google Scholar
  2. 2.
    M. Goldberger and K. Watson, Collision Theory (Wiley, New York, 1964; Mir, Moscow, 1967).MATHGoogle Scholar
  3. 3.
    A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. 1: Single-Particle Motion, (Benjamin, New York, 1969).Google Scholar
  4. 4.
    S. G. Kadmensky and P. V. Kostryukov, Phys. At. Nucl. 79, 786 (2016).CrossRefGoogle Scholar
  5. 5.
    S. G. Kadmensky and P. V. Kostryukov, Bull. Russ. Acad. Sci.: Phys. 80, 933 (2016).CrossRefGoogle Scholar
  6. 6.
    B. A. Lippmann and J. Shwinger, Phys. Rev. 79, 469 (1950).ADSCrossRefGoogle Scholar
  7. 7.
    M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398 (1953).ADSCrossRefGoogle Scholar
  8. 8.
    A. S. Davydov, Theory of the Nucleus (Fizmatlit, Moscow, 1958).Google Scholar
  9. 9.
    G. A. Petrov et al., Nucl. Phys. A 502, 297 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    P. Jesinger et al., Nucl. Instrum. Methods Phys. Res. A 440, 618 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    M. Mutterer and J. Theobald, Nuclear DecayModes (Inst. Phys., Bristol, 1996), Chap. 12.Google Scholar
  12. 12.
    G. V. Danilyan et al., JETP Lett. 26, 186 (1977).ADSGoogle Scholar
  13. 13.
    A. K. Petukhov et al., JETP Lett. 30, 439 (1979).ADSGoogle Scholar
  14. 14.
    V. A. Vesna et al., JETP Lett. 31, 663 (1980).ADSGoogle Scholar
  15. 15.
    A. Ya. Alexandrovich, A. M. Gagarski, I. A. Krasnoschekova, et al., Nucl.Phys. A 567, 541 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    V. N. Andreev et al., JETP Lett. 28, 50 (1978).ADSGoogle Scholar
  17. 17.
    P. Jesinger, A. Kötzle, F. Gönnenwein, M. Mutterer, J. von Kalben, G. V. Danilyan, V. S. Pavlov, G. A. Petrov, A. M. Gagarski, W. H. Trzaska, S. M. Soloviev, V. V. Nesvizhevski, and O. Zimmer, Phys. At. Nucl. 65, 630 (2002).CrossRefGoogle Scholar
  18. 18.
    F. Goennenwein et al., Phys. Lett. B 652, 13 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    G. V. Danilyan et al., in Proceeding of the ISINN-16, Dubna, Russia, 2008 (JINR, Dubna, 2008), p. 111.Google Scholar
  20. 20.
    G. V. Danilyan, J. Klenke, V. A. Krakhotin, V. V. Novitsky, V. S. Pavlov, and P. B. Shatalov, Phys. At. Nucl. 73, 1116 (2010).CrossRefGoogle Scholar
  21. 21.
    S. G. Kadmensky, Phys. At. Nucl. 67, 170 (2004).CrossRefGoogle Scholar
  22. 22.
    S. G. Kadmensky, L. V. Titova, D. E. Lyubashevsky, Bull. Russ.Acad. Sci.: Phys. 78, 383 (2014).CrossRefGoogle Scholar
  23. 23.
    S. G. Kadmensky, V. E. Bunakov and L. V. Titova, Bull. Russ. Acad. Sci. Phys. 76, 942 (2012).CrossRefGoogle Scholar
  24. 24.
    S. G. Kadmensky, L. V. Titova, and N. O. Dronov, Bull. Russ.Acad. Sci.: Phys. 77, 424 (2013).CrossRefGoogle Scholar
  25. 25.
    O. P. Sushkov and V. V. Flambaum, Sov. Phys. Usp. 25, 1 (1982).ADSCrossRefGoogle Scholar
  26. 26.
    V. E. Bunakov and S. G. Kadmensky, Phys. At. Nucl. 66, 1846 (2003).CrossRefGoogle Scholar
  27. 27.
    S. G. Kadmensky, S. S. Kadmensky, and D. E. Lyubashevsky, Phys. At. Nucl. 73, 1436 (2010).CrossRefGoogle Scholar
  28. 28.
    A. L. Barabanov, Symmetry and Spin–Angular Correlations in Reactions and Decays (Fizmatlit, Moscow, 2010) [in Russian].Google Scholar
  29. 29.
    S. G. Kadmensky, L. V. Titova, and A. O. Bulychev, Phys. At. Nucl. 78, 672 (2015).CrossRefGoogle Scholar
  30. 30.
    O. Tanimura and T. Fliessbach, Z. Phys. A 328, 475 (1987).ADSGoogle Scholar
  31. 31.
    P. K. Kabir, Phys. Rev. D 25, 2013 (1982).ADSCrossRefGoogle Scholar
  32. 32.
    L. Stodolsky, Nucl. Phys. B 197, 213 (1982).ADSCrossRefGoogle Scholar
  33. 33.
    A. L. Barabanov, Sov. J. Nucl. Phys. 44, 755 (1986).Google Scholar
  34. 34.
    A. L. Barabanov, Nucl. Phys. A 614, 1 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Voronezh State UniversityVoronezhRussia

Personalised recommendations