Physics of Atomic Nuclei

, Volume 80, Issue 5, pp 850–857 | Cite as

Decisive role of wriggling vibrations in the formation of angular and spin distributions of products originating from binary and ternary fission of oriented nuclei

  • S. G. Kadmensky
  • V. E. Bunakov
  • D. E. Lyubashevsky
Proceedings of LXVI International Conference on Nuclear Spectroscopy and Atomic Nuclei Structure October 11–14, 2016, Sarov, Russia/Nuclei Theory
  • 16 Downloads

Abstract

It is shown that the multiplicities and angular and energy distributions of neutrons and photons evaporated from thermalized fragments originating from the spontaneous and low-energy induced fission of nuclei, the relative yields of ground and isomeric states of final fragments, and the features of delayed neutrons emitted upon the beta decay of the above fragments can successfully be described by employing nonequilibrium distributions of spins and relative orbital angular momenta of fission fragments formed in the vicinity of the scission point for the fissile nucleus being studied. It is also shown that these distributions, which are characterized by large mean values of the spins and orbital angular momenta directed orthogonally to the symmetry axis of the fissioning nucleus are successfully constructed upon simultaneously taking into account zero-mode transverse wriggling and bending vibrations of a fissile compound nucleus in the vicinity of its scission point, the wriggling vibrations being dominant. It is confirmed that the zero-mode wriggling vibrations considered immediately above are directly involved in the formation of the angular distributions of fragments originating from the spontaneous and low-energy fission of nuclei. This makes it possible to describe successfully such distributions for photofission fragments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Skarsvåg and K. Bergheim, Nucl. Phys. 45, 72 (1963).CrossRefGoogle Scholar
  2. 2.
    A. Gavron, Phys. Rev. C 13, 2562 (R) (1976).ADSCrossRefGoogle Scholar
  3. 3.
    J. B. Wilhelmy et al., Phys. Rev. C 5, 2041 (1972).ADSCrossRefGoogle Scholar
  4. 4.
    L. G. Moretto, G. F. Peaslee, and G. J. Wozniak, Nucl. Phys. A 502, 453 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    J. O. Rasmussen, W. Nörenberg, and H. J. Mang, Nucl. Phys. A 136, 465 (1969).ADSCrossRefGoogle Scholar
  6. 6.
    T. M. Shneidman et al., Phys. Rev. C 65, 064302 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    S. G. Kadmensky, D. E. Lyubashevsky, and L. V. Titova, Bull. Russ. Acad. Sci.: Phys. 79, 879 (2015).CrossRefGoogle Scholar
  8. 8.
    V. E. Bunakov, S. G. Kadmensky, and D. E. Lyubashevsky, Phys. At. Nucl. 79, 304 (2016).CrossRefGoogle Scholar
  9. 9.
    J. R. Nix and W. J. Swiateski, Nucl. Phys. A 71, 1 (1965).CrossRefGoogle Scholar
  10. 10.
    A. Bohr and B. Mottelson, Nuclear Structure (Benjamin, New York, Amsterdam, 1969, 1975), Vols. 1, 2.MATHGoogle Scholar
  11. 11.
    S. G. Kadmensky, Phys. At. Nucl. 65, 1390, 1785 (2002).CrossRefGoogle Scholar
  12. 12.
    S. G. Kadmensky, Bull. Russ. Acad. Sci.: Phys. 68, 1072 (2004).Google Scholar
  13. 13.
    S. G. Kadmensky and L. V. Rodionova, Phys. At. Nucl. 66, 1219 (2003).CrossRefGoogle Scholar
  14. 14.
    S. G. Kadmensky and L. V. Rodionova, Phys. At. Nucl. 68, 1421 (2005).CrossRefGoogle Scholar
  15. 15.
    M. Brack et al., Rev.Mod. Phys. 44, 320 (1972).ADSCrossRefGoogle Scholar
  16. 16.
    S. G. Kadmensky, Phys. At. Nucl. 66, 1691 (2003).CrossRefGoogle Scholar
  17. 17.
    S. G. Kadmensky, Phys. At. Nucl. 67, 241 (2004).CrossRefGoogle Scholar
  18. 18.
    S. G. Kadmensky, Phys. At. Nucl. 68, 1968 (2005).CrossRefGoogle Scholar
  19. 19.
    O. Tanimura and T. Fliessbach, Z. Phys. A 328, 475 (1987).ADSGoogle Scholar
  20. 20.
    P. Fong, Phys. Rev. C 3, 2025 (1971).ADSCrossRefGoogle Scholar
  21. 21.
    C. F. Tsang, Phys. Scr. Suppl. A 10, 90 (1974).ADSCrossRefGoogle Scholar
  22. 22.
    S. G. Kadmenskiĭ, V. P. Markushev, and V. I. Furman, Sov. J. Nucl. Phys. 31, 607 (1980).Google Scholar
  23. 23.
    S. G. Kadmenskiĭ, V. P. Markushev, and V. I. Furman, Sov. J. Nucl. Phys. 35, 166 (1982).Google Scholar
  24. 24.
    S. G. Kadmensky and L. V. Titova, Phys. At. Nucl. 72, 1738 (2009).CrossRefGoogle Scholar
  25. 25.
    V. E. Bunakov, S. G. Kadmensky, and S. S. Kadmensky, Phys. At. Nucl. 71, 1887 (2008).CrossRefGoogle Scholar
  26. 26.
    S. G. Kadmensky, V. E. Bunakov, and L. V. Titova, Phys. At. Nucl. 78, 662 (2015).CrossRefGoogle Scholar
  27. 27.
    T. Ericson and V. Strutinski, Nucl. Phys. 8, 284 (1958).CrossRefGoogle Scholar
  28. 28.
    V.M. Strutinskiĭ, Sov. Phys. JETP 10, 613 (1960).Google Scholar
  29. 29.
    S. G. Kadmensky and D. E. Lyubashevsky, Bull. Russ. Acad. Sci.: Phys. 76, 457 (2012).CrossRefGoogle Scholar
  30. 30.
    W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952).ADSCrossRefGoogle Scholar
  31. 31.
    P. A. Moldauer, Phys. Rev. 135, B642 (1964).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    E. S. Troubetzkoy, Phys. Rev. 122, 212 (1961).ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    V. E. Bunakov et al., Bull. Russ. Acad. Sci.: Phys. 70, 1853 (2006).Google Scholar
  34. 34.
    S. G. Kadmensky, L. V. Titova, and D. E. Lyubashevsky, Bull. Russ. Acad. Sci.: Phys. 81 (2017, in press).Google Scholar
  35. 35.
    A. V. Ignatyuk, N. S. Rabotnov, G. N. Smirenkin, et al., Sov. Phys. JETP 34, 684 (1971).ADSGoogle Scholar
  36. 36.
    Yu. B. Ostapenko, G. N. Smirenkin, and A.S. Soldatov, Sov. J. Part. Nucl. 12, 545 (1981).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. G. Kadmensky
    • 1
  • V. E. Bunakov
    • 2
  • D. E. Lyubashevsky
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Petersburg Nuclear Physics InstituteNational Research Center Kurchatov InstituteGatchina, Leningrad oblastRussia

Personalised recommendations