Physics of Atomic Nuclei

, Volume 80, Issue 5, pp 867–876 | Cite as

Isospin in halo nuclei: Borromean halo, tango halo, and halo isomers

Proceedings of LXVI International Conference on Nuclear Spectroscopy and Atomic Nuclei Structure October 11–14, 2016, Sarov, Russia/Nuclei Theory
  • 36 Downloads

Abstract

It is shown that the wave functions for isobaric analog, double isobaric analog, configuration, and double configuration states may simultaneously have components corresponding to nn, np, and pp halos. The difference in the halo structure between the ground and excited states of a nucleus may lead to the formation of halo isomers. A halo structure of both Borromean and tango types can be observed for np configurations. The structure of ground and excited states with various isospins in halo-like nuclei is discussed. The reduced probabilities B() and B() for gamma transitions in 6−8Li, 8−10Be, 8,10,11B, 10−14C, 13−17N, 15−17,19O, and 17F nuclei are analyzed. Particular attention is given to the cases where the ground state of a nucleus does not have a halo structure, but where its excited state may have it.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Tanihata, J. Phys. G 22, 157 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    A. S. Jensen et al., Rev. Mod. Phys. 76, 215 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    B. Jonson, Phys. Rep. 389, 1 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    L. I. Galanina and N. S. Zelenskaya, Phys. Part. Nucl. 43, 147 (2012).CrossRefGoogle Scholar
  5. 5.
    V. T. Voronchev, V. M. Krasnopolsky, and V. I. Kukulin, J. Phys. G 8, 649 (1982).ADSCrossRefGoogle Scholar
  6. 6.
    V. T. Voronchev, V. M. Krasnopolsky, V. I. Kukulin, and P. B. Sazonov, J. Phys. G 8, 667 (1982).ADSCrossRefGoogle Scholar
  7. 7.
    M. V. Zhukov, B. V. Danilin, D. V. Fedorov, et al., Phys. Rep. 231, 151 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    R. Raabe, A. Andreev, M. Huyse, et al., Phys. Rev. C 67, 044602 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    L. I. Galanina and N. S. Zelenskaya, Phys. At. Nucl. 70, 283 (2007).CrossRefGoogle Scholar
  10. 10.
    I. N. Izosimov, AIP Conf. Proc. 1681, 030006 (2015); Preprint No. E6-2015-41 (JINR, Dubna, 2015).CrossRefGoogle Scholar
  11. 11.
    I. N. Izosimov, EPJWeb Conf. 107, 09003 (2016).CrossRefGoogle Scholar
  12. 12.
    Y. Suzuki and K. Yabana, Phys. Lett. B 272, 173 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    L. Zhihong et al., Phys. Lett. B 527, 50 (2002).CrossRefGoogle Scholar
  14. 14.
    L. I. Galanina and N. S. Zelenskaya, Phys. At. Nucl. 76, 1457 (2013).CrossRefGoogle Scholar
  15. 15.
    C. Jin-Gen et al., Chin. Phys. Lett. 20, 1021 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    A. A. Ogloblin et al., Int. J. Mod. Phys. E 20, 823 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    A. A. Ogloblin et al., Phys. Rev. C 84, 054601 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    V. K. Lukyanov et al. Phys. Rev. C 88, 034612 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    L. I. Galanina and N. S. Zelenskaya, Phys. At. Nucl. 78, 685 (2015).CrossRefGoogle Scholar
  20. 20.
    L. I. Galanina and N. S. Zelenskaya, Phys. At. Nucl. 79, 594 (2016).CrossRefGoogle Scholar
  21. 21.
    Yu. V. Naumov and O. E. Kraft, Isospin in Nuclear Physics (Nauka, Leningrad, 1972) [in Russian].Google Scholar
  22. 22.
    Yu. V. Naumov, A. A. Bykov, and I. N. Izosimov, Sov. J. Part. Nucl. 14, 175 (1983).Google Scholar
  23. 23.
    I. N. Izosimov, in Procceedings of the International Symposium on Exotic Nuclei EXON2012, Vladivostok, Russia, 2012 (World Scientific, Singapore, 2013), p. 129; JINR Preprint No. E6-2012-121 (JINR, Dubna, 2012).Google Scholar
  24. 24.
    Yu. V. Naumov and O. E. Kraft, Sov. J. Part. Nucl. 6, 361 (1975).Google Scholar
  25. 25.
    J. K. Tuli, Report BNL-NCS-51655-01/02-Rev (NNDC, Brookhaven Natl. Labor., New York, 2001), p. 101.Google Scholar
  26. 26.
    P. M. Endt, At. Data Nucl. Data Tables 23, 547 (1979).ADSCrossRefGoogle Scholar
  27. 27.
    P.M. Endt, At. Data Nucl. Data Tables 23, 3 (1979).ADSCrossRefGoogle Scholar
  28. 28.
    P.M. Endt, At. Data Nucl. Data Tables 26, 47 (1981).ADSCrossRefGoogle Scholar
  29. 29.
    NNDC, Brookhaven National Laboratory. http://www.nndc.bnl.gov.Google Scholar
  30. 30.
    R. Kalpakchieva, V. A. Maslov, R. A. Astabatyan, A. A. Kulko, S. M. Lukyanov, E. R. Markarian, Yu. Ts. Oganessian, Yu. E. Penionzhkevich, N. K. Skobelev, and Yu. G. Sobolev, Phys. At. Nucl. 70, 619 (2007).CrossRefGoogle Scholar
  31. 31.
    Yu. E. Penionzhkevich, Phys. At. Nucl. 72, 1617 (2007).CrossRefGoogle Scholar
  32. 32.
    D. R. Tilley et al., Nucl. Phys. A 708, 3 (2002).ADSCrossRefGoogle Scholar
  33. 33.
    J. H. Kelley et al., Nucl. Phys. A 880, 88 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    D. R. Tilley et al., Nucl. Phys. A 708, 3 (2002).ADSCrossRefGoogle Scholar
  35. 35.
    D. R. Tilley et al., Nucl. Phys. A 745, 155 (2004).ADSCrossRefGoogle Scholar
  36. 36.
    F. Ajzenberg-Selove, Nucl. Phys. A 506, 1 (1990).ADSCrossRefGoogle Scholar
  37. 37.
    F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1991).ADSCrossRefGoogle Scholar
  38. 38.
    D. R. Tilley et al., Nucl. Phys. A 564, 1 (1993).ADSCrossRefGoogle Scholar
  39. 39.
    D. R. Tilley et al., Nucl. Phys. A 595, 1 (1995).ADSCrossRefGoogle Scholar
  40. 40.
    V. G. Soloviev, Theory of Atomic Nuclei: Quasiparticles and Phonons (Inst. Physics, Bristol and Philadelphia, 1992).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia

Personalised recommendations