Physics of Atomic Nuclei

, Volume 80, Issue 5, pp 952–956 | Cite as

Differential cross section for the 16O(t, p)18O reaction and determination of the size of the two-neutron periphery in the 18O nucleus

Proceedings of LXVI International Conference on Nuclear Spectroscopy and Atomic Nuclei Structure October 11–14, 2016, Sarov, Russia/Nuclei Theory
  • 16 Downloads

Abstract

Within the theoretical formalism that combines a four-body problem with themultiparticle shell model, it is shown that the cross section for the dineuteron-stripping mechanism is consistent with the experimental angular distribution of protons from the 16O(t, p)18O reaction. This makes it possible to find the wave function for the relative motion of the dineutron and 16O and to obtain thereby the probability density W(r) for the dineutron in 18O, the nn16O interaction potential, and the root-mean-square distance 〈L nn between the dineutron and 16O. The respective calculations reveal that, at r ≈ 8 fm, the dineutron probability density and a rather deep nn16O potential become negligible, which leads to the absence of a dineuntron periphery in 18O. It seems that one can explain this fact by a rather large value (12.19 MeV) of the dineutron binding energy in this nucleus. Thus, the 18O nucleus is quite compact an object, despite the excess of two neutrons, and has a neutron skin rather than a periphery.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. E. Penionzhkevich and R. Karapakchieva, Light Nuclei near Neutron Stability Boundary (OIYaI, Dubna, 2016) [in Russian].Google Scholar
  2. 2.
    E. K. Warburton, G. A. Brown, and D. J. Millener, Phys. Lett. B 293, 7 (1992).ADSCrossRefGoogle Scholar
  3. 3.
    W. K. Warburton and G. A. Brown, Phys. Rev. C 46, 923 (1992).ADSCrossRefGoogle Scholar
  4. 4.
    Nuclear Dates CDFE. http://cdfe.sinp.msu.ru/.Google Scholar
  5. 5.
    L. I. Galanina and N. S. Zelenskaya, Phys. At. Nucl. 76, 1457 (2013).CrossRefGoogle Scholar
  6. 6.
    L. I. Galanina and N. S. Zelenskaya, Phys. At. Nucl. 78, 685 (2015).CrossRefGoogle Scholar
  7. 7.
    L. I. Galanina and N. S. Zelenskaya, Phys. At. Nucl. 79, 594 (2016).CrossRefGoogle Scholar
  8. 8.
    E. O. Alt, P. Grassberger, and W. Sandhas, Nucl. Phys. A 139, 209 (1969).ADSCrossRefGoogle Scholar
  9. 9.
    L. I. Galanina and N. S. Zelenskaya, Phys. Part. Nucl. 43, 147 (2012).CrossRefGoogle Scholar
  10. 10.
    V. I. Kukulin, V. G. Neudatchin, I. T. Obukhovsky, and Yu. F. Smirnov, in Clastering Phenomena in Nuclei, Ed. by K. Wildermuth and P. Kramer (Friedrich Vieweg, Braunschweig, 1983), Vol. 3.Google Scholar
  11. 11.
    V. T. Voronchev, V. M. Krasnopolsky, and V. I. Kukulin, J. Phys. G 8, 649 (1982).ADSCrossRefGoogle Scholar
  12. 12.
    V. T. Voronchev, V. M. Krasnopolsky, V. I. Kukulin, and P. B. Sazonov, J. Phys. G8, 667 (1982).ADSCrossRefGoogle Scholar
  13. 13.
    M. V. Zhukov, B. V. Danilin, D. V. Fedorov, et al., Phys. Rep. 231, 151 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    N. S. Zelenskaya and I. B. Teplov, Exchange Processes in Nuclear Reactions (Mosk. Gos. Univ., Moscow, 1985) [in Russian].Google Scholar
  15. 15.
    S. Nilsson, in Deformation of Atomic Nuclei, Ed. by L. A. Sliv (Inostrannaya Literatura, Moscow, 1958) [in Russian].Google Scholar
  16. 16.
    H. A. Yahn and H. van Wieringen, Proc. R. Soc. London, Ser. A 209, 502 (1951).ADSCrossRefGoogle Scholar
  17. 17.
    A. N. Boyarkina, The Structure of 1p-Shell Nuclei (Mosk. Gos. Univ., Moscow, 1973) [in Russian].Google Scholar
  18. 18.
    M. E. Cobern L. C. Bland, H. T. Fortune, et al., Phys. Rev. C 23, 2387 (1981)ADSCrossRefGoogle Scholar
  19. 19.
    J. Tompson, http://www.fresko.org.uk.Google Scholar
  20. 20.
    T. L. Belyaeva and N. S. Zelenskaya, in Proceeding of the CP90 Europhysics Conference on Computational Physics, Amsterdam, Netherland, 1990, Ed. by A. Tenner (Word Scientific, Singapore, 1991), p. 238Google Scholar
  21. 20a.
    N. S. Zelenskaya, O. Yu. Balashova, and A. A. Ovchinnikova, in Proceeding of the CP90 Europhysics Conference on Computational Physics, Amsterdam, Netherland, 1990, Ed. by A. Tenner (Word Scientific, Singapore, 1991), p. 552.Google Scholar
  22. 21.
    L. I. Galanina and N. S. Zelenskaya, RF Patent No. 2016661673 (2016).Google Scholar
  23. 22.
    N. Austern, Direct Nuclear Reaction Theories (Wiley-Interscience, New York, 1970).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations