Physics of Atomic Nuclei

, Volume 80, Issue 5, pp 987–994 | Cite as

Beasts in Lambda-CDM zoo

XIX International Moscow School of Physics (44th ITEPWinter School of Physics) and International School of Physics “QCD and Exotic Hadrons” February 16–23, 2016, Serpukhov, Russia/Elementary Particles and Fields Theory
  • 16 Downloads

Abstract

Recent astronomical discoveries of supermassive black holes (quasars), gamma-bursters, super-novae, and dust at high redshifts, z = (5−10), are reviewed. Such a dense population of the early universe is at odds with the conventional mechanisms of its possible origin. Similar data from the contemporary universe, which are also in conflict with natural expectations, are considered too. Two possible mechanisms are suggested, at least one of which can potentially solve all these problems. As a by-product of the last model, an abundant cosmological antimatter may be created.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Primack, arXiv: 1505.02821.Google Scholar
  2. 2.
    Planck Collab. (P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, et al.), arXiv: 1303.5076v3.Google Scholar
  3. 3.
    Z. Berezhiani, A. D. Dolgov, and I. I. Tkachev, Phys. Rev. D 92, 061303 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    W. Zheng et al., Nature 489, 406 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    D. Coe et al., Astrophys. J. 762, 32 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    Chao-Wei Tsai, P. R. M. Eisenhardt, J. Wu, et al., arXiv: 1410.1751.Google Scholar
  7. 7.
    P. A. Oesch et al., arXiv: 1603.00461.Google Scholar
  8. 8.
    D. Waters et al., arXiv: 1604.00413.Google Scholar
  9. 9.
    F. Melia, arXiv: 1403.0908.Google Scholar
  10. 10.
    D. J. Mortlock et al., Nature 474, 616 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    X.-B. Wu et al. Nature 518, 512 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    Y.Matsuoka et al., arXiv: 1603.02281.Google Scholar
  13. 13.
    A. Lupi et al., arXiv: 1512.02651; R. Valiante et al., arXiv: 1601.07915; J. L. Johnson and F. Haardt, arXiv: 1601.05473.Google Scholar
  14. 14.
    D. L Clements et al., arXiv: 1511.03060.Google Scholar
  15. 15.
    L.Mattsson, arXiv: 1505.04758.Google Scholar
  16. 16.
    K. K. Knudsen, D. Watson, D. Frayer, et al., arXiv: 1603.03222.Google Scholar
  17. 17.
    V. Asboth et al., arXiv: 1601.02665.Google Scholar
  18. 18.
    M.Mancini et al., arXiv: 1505.01841.Google Scholar
  19. 19.
    Mi.J.Michałowski, arXiv: 1512.00849.Google Scholar
  20. 20.
    R. Nakamura et al., arXiv: 1007.0466Google Scholar
  21. 20a.
    S. Matsuura et al., Phys. Rev. D 72, 123505 (2005), 75, 068302 (2007); Prog. Theor. Phys. 112, 971 (2004).ADSCrossRefGoogle Scholar
  22. 21.
    T. Matsumoto et al., arXiv: 1512.03058.Google Scholar
  23. 22.
    J. J. Cowan et al., Astrophys. J. 572, 861 (2002).ADSCrossRefGoogle Scholar
  24. 23.
    J. S. Kalirai, Nature 486, 90 (2012).ADSGoogle Scholar
  25. 24.
    A. Frebel et al., Astrophys. J. Lett. 660, L117 (2007).ADSCrossRefGoogle Scholar
  26. 25.
    H. E. Bond et al., Astrophys. J. Lett. 765, L12 (2013).ADSCrossRefGoogle Scholar
  27. 26.
    X. Dumusque et al., Astrophys. J. 789, 154 (2014).ADSCrossRefGoogle Scholar
  28. 27.
    N. Häring and H.-W. Rix, Astrophys. J. Lett. 604, L89 (2004)ADSCrossRefGoogle Scholar
  29. 27a.
    E. Sani et al., Mon. Not. R. Astron. Soc. 413, 1479 (2011).ADSCrossRefGoogle Scholar
  30. 28.
    R. C. E. van den Bosch et al., Nature 491, 729 (2012).ADSCrossRefGoogle Scholar
  31. 29.
    A. Dolgov and J. Silk, Phys. Rev. D 47, 4244 (1993)ADSCrossRefGoogle Scholar
  32. 29a.
    A. D. Dolgov, M. Kawasaki, and N. Kevlishvili, Nucl. Phys. B 807, 229 (2009).ADSCrossRefGoogle Scholar
  33. 30.
    F. Khan, K. Holley-Bockelmann, and P. Berczik, arXiv: 1405.6425.Google Scholar
  34. 31.
    J. Strader et al., Astrophys. J. Lett. 775, L6 (2013).ADSCrossRefGoogle Scholar
  35. 32.
    J. Th. van Loon and A. E. Sansom, arXiv: 1508.00698.Google Scholar
  36. 33.
    J. F. Hennawi et al., Science 348, 779 (2015).ADSMathSciNetCrossRefGoogle Scholar
  37. 34.
    F. Ozel et al., arXiv: 1006.2834.Google Scholar
  38. 35.
    L. Kreidberg, et al., arXiv: 1205.1805.Google Scholar
  39. 36.
    W. M. Farr et al., arXiv: 1011.1459.Google Scholar
  40. 37.
    S. I. Blinnikov, A. D. Dolgov, and K. A. Postnov, Phys. Rev. D 92, 023516 (2015).ADSCrossRefGoogle Scholar
  41. 38.
    C. Alcock et al., Astrophys. J. 542, 281 (2000).ADSCrossRefGoogle Scholar
  42. 39.
    D. P. Bennett, Astrophys. J. 633, 906 (2005).ADSCrossRefGoogle Scholar
  43. 40.
    P. Tisserand et al., Astron. Astrophys. 469, 387 (2007).ADSCrossRefGoogle Scholar
  44. 41.
    A. Riffeser, S. Seitz, and R. Bender, Astrophys. J. 684, 1093 (2008).ADSCrossRefGoogle Scholar
  45. 42.
    G. Ingrosso et al., Astron. Astrophys. 462, 895 (2007).ADSCrossRefGoogle Scholar
  46. 43.
    M. Moniez, arXiv: 1001.2707.Google Scholar
  47. 44.
    S. C. Novati et al., Mon. Not. R. Astron. Soc. 435, 1582 (2013).ADSCrossRefGoogle Scholar
  48. 45.
    S. Mao, Res. Astron. Astrophys. 12, 947 (2012).ADSCrossRefGoogle Scholar
  49. 46.
    A. Dolgov, V. Halenka, and I. Tkachev, J. Cosmol. Astropart. Phys. 1410, 047 (2014).ADSCrossRefGoogle Scholar
  50. 47.
    F. Melia and T. M. McClintock, arXiv: 1511.05494.Google Scholar
  51. 48.
    I. Affleck and M. Dine, Nucl. Phys. B 249, 361 (1985).ADSCrossRefGoogle Scholar
  52. 49.
    Ya. B. Zeldovich and I. D. Novikov, Sov. Astron. 10, 602 (1967).ADSGoogle Scholar
  53. 50.
    C. Bambi and A. D. Dolgov, Nucl. Phys. B 784, 132 (2007)ADSCrossRefGoogle Scholar
  54. 50a.
    A. D. Dolgov and S. I. Blinnikov, Phys. Rev. D 89, 021301(R) (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.A.I. Alikhanov Institute of Theoretical and Experimental PhysicsMoscowRussia
  3. 3.University of FerraraFerraraItaly

Personalised recommendations