Advertisement

Physics of Atomic Nuclei

, Volume 80, Issue 5, pp 838–843 | Cite as

Do analogs of the Hoyle state exist in 16O?

  • A. N. Danilov
  • A. S. Demyanova
  • A. A. Ogloblin
  • T. L. Belyaeva
  • S. A. Goncharov
Proceedings of LXVI International Conference on Nuclear Spectroscopy and Atomic Nuclei Structure October 11–14, 2016, Sarov, Russia/Nuclei Experiment
  • 60 Downloads

Abstract

The root-mean-square radii of short-lived 0+-states in 16O were obtained for the first time from an analysis of α+16O diffraction scattering. Data on elastic and inelastic α+16O scattering were analyzed on the basis of the modified diffraction model in the range of projectile energies between a few tens of MeV units to 400 MeV. No case of a significant enhancement of the radius with respect to its ground-state value was observed. In particular, this concerns the 15.1-MeV 0 6 + state, which lies near the threshold for breakup to four alpha particles and for which we did not confirm a giant radius predicted by the alpha-particle-condensate model. This result disproves the hypothesis that the 16O nucleus in the 0 6 + state has a rarefied structure and appears to be an analog of the known Hoyle state at 7.65 MeV (0 2 + ) in 12C.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Baz, Adv. Phys. 8, 349 (1959).ADSCrossRefGoogle Scholar
  2. 2.
    K. Ikeda, N. Takigawa, and H. Horiuchi, Prog. Theor. Phys. Suppl. E68, 464 (1968).ADSCrossRefGoogle Scholar
  3. 3.
    A. Tohsaki, H. Horiuchi, P. Schuck, and G. Ropke, Phys. Rev. Lett. 87, 192501 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    M. Kamimura, Nucl. Phys. A 351, 456 (1981).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Kanada-En’yo, Phys. Rev. C 75, 024302 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    T. Kawabata et al., Int. J. Mod. Phys. E 17, 2071 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    A. Ogloblin et al., EPJWeb Conf. 66, 02074 (2014).CrossRefGoogle Scholar
  8. 8.
    A. N. Danilov et al., Phys. Rev. C 80, 054603 (2009).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Ohkubo and Y. Hirabayashi, Phys. Rev. C 70, 041602(R) (2004).ADSCrossRefGoogle Scholar
  10. 10.
    S. Ohkubo and Y. Hirabayashi, Phys. Lett. B 684, 127 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    A. S. Demyanova et al., Int. J.Mod. Phys. E 17, 2118 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    T. Kawabata et al., Phys. Lett. B 646, 6 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    A. N. Danilov, A. S. Demyanova, S. V. Dmitriev, A. A. Ogloblin, T. L. Belyaeva, S. A. Goncharov, Yu. B. Gurov, V. A. Maslov, Yu. G. Sobolev, W. Trzaska, S. V. Khlebnikov, P. Heikkinen, R. Julin, G. P. Tyurin, N. Burtebaev, and T. Zholdybayev, Phys. At. Nucl. 78, 777 (2015).CrossRefGoogle Scholar
  14. 14.
    A. S. Demyanova et al., Int. J. Mod. Phys. E 20, 915 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Funaki, T. Yamada, H. Horiuchi, et al., Phys. Rev. Lett. 101, 082502 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    Y. Funaki, T. Yamada, A. Tohsaki, et al., Phys. Rev. C 82, 024312 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    T. Wakasa, E. Ihara, K. Fujita, et al., Phys. Lett. B 653, 173 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    M. Itoh et al., J. Phys.: Conf. Ser. 569, 012009 (2014).Google Scholar
  19. 19.
    M. Reed, Report No. 18414 (Lawrence Rad. Lab., Berkeley, Livermore, 1968).Google Scholar
  20. 20.
    M. N. Harakeh et al., Nucl. Phys. A 265, 189 (1976).ADSCrossRefGoogle Scholar
  21. 21.
    K. T. Knöpfle et al., Phys. Rev. Lett. 35, 779 (1975).ADSCrossRefGoogle Scholar
  22. 22.
    Y.-W. Lui et al., Phys. Rev. C 64, 064308 (2001).ADSCrossRefGoogle Scholar
  23. 23.
    M. K. Mehta et al., Phys. Rev. 160, 791 (1967).ADSCrossRefGoogle Scholar
  24. 24.
    A. V. Ignatenko, V. M. Lebedev, N. V. Orlova, and A. V. Spassky, Phys. At. Nucl. 59, 565 (1996).Google Scholar
  25. 25.
    H. Abele et al., Z. Phys. A 326, 373 (1987).ADSGoogle Scholar
  26. 26.
    G. Hauser et al., Nucl. Phys. A 128, 81 (1969).ADSCrossRefGoogle Scholar
  27. 27.
    M. Takashina, Phys. Rev. C 78, 014602 (2008).ADSCrossRefGoogle Scholar
  28. 28.
    T. L. Belyaeva et al., Phys. Rev. C 90, 064610 (2014).ADSCrossRefGoogle Scholar
  29. 29.
    D. T. Khoa, H. G. Bohlen, W. von Oertzen, et al., Nucl. Phys. A 759, 3 (2005).ADSCrossRefGoogle Scholar
  30. 30.
    Y. Kanada-En’yo, Phys. Rev. C 89, 024302 (2014).ADSCrossRefGoogle Scholar
  31. 31.
    Y. Suzuki, Prog. Theor. Phys. 55, 1751 (1976); 56, 111 (1976).ADSCrossRefGoogle Scholar
  32. 32.
    T. Yamada, Y. Funaki, T. Myo, et al., Phys. Rev. C 85, 034315 (2012).ADSCrossRefGoogle Scholar
  33. 33.
    T. Yamada and P. Schuck, Eur. Phys. J. A 26, 185 (2005).ADSCrossRefGoogle Scholar
  34. 34.
    T. Yamada and Y. Funaki, Phys. Rev. C 82, 064315 (2010).ADSCrossRefGoogle Scholar
  35. 35.
    A. A. Ogloblin, T. L. Belyaeva, A. N. Danilov, A. S. Demyanova, and S. A. Goncharov, Eur. Phys. J. A 49, 46 (2013).ADSCrossRefGoogle Scholar
  36. 36.
    H. Yamaguchi, T. Hashimoto, S. Hayakawa, et al., Phys. Rev. C 83, 034306 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    S. A. Goncharov, A. S. Demyanova, A. A. Ogloblin, A. N. Danilov, T. L. Belyaeva, and W. Trzaska, Mosc. Univ. Phys. Bull. 70, 333 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. N. Danilov
    • 1
  • A. S. Demyanova
    • 1
  • A. A. Ogloblin
    • 1
  • T. L. Belyaeva
    • 2
  • S. A. Goncharov
    • 3
  1. 1.National Research Center Kurchatov InstituteMoscowRussia
  2. 2.Universidad Autónoma del Estado de MéxicoTolucaMexico
  3. 3.Faculty of PhysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations