Physics of Atomic Nuclei

, Volume 80, Issue 5, pp 919–927 | Cite as

Calculation of nucleon densities in calcium, nickel, and molybdenum isotopes on the basis of the dispersive optical model

Proceedings of LXVI International Conference on Nuclear Spectroscopy and Atomic Nuclei Structure October 11–14, 2016, Sarov, Russia/Nuclei Theory
  • 24 Downloads

Abstract

The radial distributions of proton and neutron densities in the even–even isotopes 40−70Cа and 48−78Ni and the analogous distributions of neutron densities in the even–even isotopes 92−138Mo were calculated on the basis of the mean-fieldmodel involving a dispersive optical potential. The respective root-mean-square radii and neutron-skin thicknesses were determined for the nuclei under study. In N > 40 calcium isotopes, the calculated neutron root-mean-square radius exhibits a fast growth with increasing N, and this is consistent with the prediction of the neutron-halo structure in calcium isotopes near the neutron drip line.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Baldo and G. F. Burgio, Rep. Prog. Phys. 75, 026301 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    J. Meng, H. Toki, J. Y. Zeng, et al., Phys. Rev. C 65, 041302 (R) (2002).ADSCrossRefGoogle Scholar
  3. 3.
    J. Terasaki, S. Q. Zhang, S. G. Zhou, and J. Meng, Phys. Rev. C 74, 054318 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    J. Meng and P. Ring, Phys. Rev. Lett. 80, 460 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991).ADSGoogle Scholar
  6. 6.
    O. V. Bespalova, A. A. Klimochkina, and T. I. Spasskaya, Phys. At. Nucl. 79, 586 (2016).CrossRefGoogle Scholar
  7. 7.
    M. Jaminon, C. Mahaux, and H. Ngô, Nucl. Phys. A 440, 228 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    R. Subedi et al., Science 320, 1476 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    W. H. Dickhoff and C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    M. Wang, G. Audi, A. H. Wapstra, et al., Chin. Phys. C 36, 1603 (2012).CrossRefGoogle Scholar
  11. 11.
    H. Koura, T. Tachibana, M. Uno, and M. Yamada, Prog. Theor. Phys. 113, 305 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 82, 035804 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    O. V. Bespalova, I. N. Boboshin, V. V. Varlamov, T. A. Ermakova, B. S. Ishkhanov, E.A. Romanovsky, T. I. Spasskaya, and T. P. Timokhina, Phys. At. Nucl. 68, 191 (2005).CrossRefGoogle Scholar
  14. 14.
    O. V. Bespalova, I. N. Boboshin, V. V. Varlamov, B. S. Ishkhanov, E. A. Romanovsky, and T. I. Spasskaya, Phys. At. Nucl. 66, 644 (2003).CrossRefGoogle Scholar
  15. 15.
    O. V. Bespalova, I. N. Boboshin, V. V. Varlamov, T. A. Ermakova, B. S. Ishkhanov, A. A. Klimochkina, S. Yu. Komarov, H. Koura, E. A. Romanovsky, and T. I. Spasskaya, Phys. At. Nucl. 74, 1521 (2011).CrossRefGoogle Scholar
  16. 16.
    O. V. Bespalova, T. A. Ermakova, A. A. Klimochkina, E. A. Romanovsky, and T. I. Spasskaya, Phys. At. Nucl. 78, 873 (2015).CrossRefGoogle Scholar
  17. 17.
    A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).ADSCrossRefGoogle Scholar
  18. 18.
    H. J. Emrich, PhD Thesis (Univ. of Mainz, 1983).Google Scholar
  19. 19.
    G. Beuscher, PhD Thesis (Univ. of Mainz, 1983).Google Scholar
  20. 20.
    C.W. P. Palmer, P. E. G. Baird, S. A. Blundell, et al., J. Phys. B 17, 2197 (1984).ADSCrossRefGoogle Scholar
  21. 21.
    H. D. Wohlfahrt, E. B. Shera, M. V. Hoehn, et al., Phys. Rev. C 23, 533 (1981).ADSCrossRefGoogle Scholar
  22. 22.
    A. Steudel, U. Triebe, and D. Wendlandt, Z. Phys. A 296, 189 (1980).ADSCrossRefGoogle Scholar
  23. 23.
    B. S. Ishkhanov, M. E. Stepanov, and T. Yu. Tretyakova, Moscow Univ. Phys. Bull. 69, 1 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    O. V. Bespalova, E. A. Romanovsky, and T. I. Spasskaya, Phys. At. Nucl. 78, 118 (2015).CrossRefGoogle Scholar
  25. 25.
    J. Lee, J. A. Tostevin, B. A. Brown, et al., Phys. Rev. C 73, 044608 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    G. J. Kramer, H. P. Blok, and L. Lapikás, Nucl. Phys. A 679, 267 (2001).ADSCrossRefGoogle Scholar
  27. 27.
    J. Dobaczewski et al., Phys. Rev. C 53, 2809 (1996).ADSCrossRefGoogle Scholar
  28. 28.
    J. M. Mueller, R. J. Charity, R. Shane, et al., Phys. Rev. C 83, 064605 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    R. J. Charity, J. M. Mueller, L. G. Sobotka, and W. H. Dickhoff, Phys. Rev. C 76, 044314 (2007).ADSCrossRefGoogle Scholar
  30. 30.
    H. Grawe and M. Lewitowicz, Nucl. Phys. A 693, 116 (2001).ADSCrossRefGoogle Scholar
  31. 31.
    Y. Zhang, M. Matsuo, and J. Meng, Phys. Rev. C 86, 054318 (2012).ADSCrossRefGoogle Scholar
  32. 32.
    C. J. Horowitz et al., Phys. Rev. C 85, 032501(R) (2012).ADSCrossRefGoogle Scholar
  33. 33.
    D. M. Rossi et al., Phys. Rev. Lett. 111, 242503 (2013).ADSCrossRefGoogle Scholar
  34. 34.
    C. J. Batty, E. Friedman, H. J. Gils, and H. Rebel, Adv. Nucl. Phys. 19, 1 (1989).Google Scholar
  35. 35.
    B. A. Brown, S. E. Massen, and P. E. Hodgson, J. Phys. G 5, 1655 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations