The computer-based model of quantum measurements

Abstract

Quantum theory of measurements is an extremely important part of quantum mechanics. Currently perturbations by quantum measurements of observable quantities of atomic systems are rarely taken into account in computing algorithms and calculations. In the previous studies of the authors, constructive model of quantum measurements has been developed and implemented in the form of symbolic and numerical calculations for the hydrogen-like atoms. This work describes a generalization of these results to the alkali metal atoms.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. S. Holevo, Statistical Structure of Quantum Theory (Springer-Verlag, Berlin, Heidelberg, 2001, Lect. Notes Phys.Monographs 67, 2001).

    Google Scholar 

  2. 2.

    C. W. Helstrom, Quantum Detection and Estimation Theory (Acad. Press, New York, 1976).

    Google Scholar 

  3. 3.

    G. Ludwig, Commun. Math. Phys. 9, 1 (1968).

    ADS  Article  Google Scholar 

  4. 4.

    E. B. Davies and J. T. Lewis, Commun.Math. Phys. 17, 239 (1970).

    ADS  Article  Google Scholar 

  5. 5.

    M. Ozawa, Found. Phys. 41, 592 (2011).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    M. Ozawa and Y. Kitajima, Found. Phys. 42, 475 (2012).

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    V. V. Kuryshkin, Izv. Vyssh. Uchebn. Zaved., Phys., No. 11, 102 (1971).

    Google Scholar 

  8. 8.

    V. V. Kuryshkin, Ann. Inst. Henri Poincaré 17, 81 (1972).

    Google Scholar 

  9. 9.

    V. V. Kuryshkin, C. R. Acad. Sci. B 274, 1107 (1972).

    Google Scholar 

  10. 10.

    V. V. Kuryshkin, Int. J. Theor. Phys. 7, 451 (1973).

    MathSciNet  Article  Google Scholar 

  11. 11.

    K. Wódkiewicz, Phys. Rev. Lett. 52, 1064 (1984).

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    P. Kochański and K. Wódkiewicz, Rep. Math. Phys. 40, 245 (1997).

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    G. M. D’Ariano et al., Phys. Rev. A 52, R1801 (R) (1995).

    ADS  Article  Google Scholar 

  14. 14.

    A. V. Zorin, Bull. PFUR, Ser. MIPh., No. 2, 43 (2012).

    Google Scholar 

  15. 15.

    L. Sevastyanov et al., Lect. Notes Comp. Sci. 7125, 174 (2012).

    Article  Google Scholar 

  16. 16.

    A. V. Zorin and L. A. Sevastjyanov, Bull. PFUR, Ser. MIPh., No. 3(1), 98 (2010).

    Google Scholar 

  17. 17.

    G. M. D’Ariano, in Concepts and Advances in Quantum Optics and Spectroscopy of Solids, Ed. by T. Hakioglu and A. S. Shumovsky (Kluwer Acad., Amsterdam, 1997).

  18. 18.

    V. V. Kuryshkin and Yu. I. Zaparovanny, C. R. Acad. Sci. B 277, 17 (1974).

    Google Scholar 

  19. 19.

    V. V. Kurishkin and Ya. P. Terletsky, in Problems of Statistical Physics and Field Theory (PFU, Moscow, 1976).

    Google Scholar 

  20. 20.

    V. V. Kurishkin et al., Ann. Fond. L. de Broglie 3, 45 (1978).

    Google Scholar 

  21. 21.

    A. V. Zorin et al., Bull. PFUR, Ser. MIPh., No. 6, 62 (1998).

    Google Scholar 

  22. 22.

    C. L. Mehta, J. Math. Phys. 5, 677 (1964).

    ADS  Article  Google Scholar 

  23. 23.

    L. Cohen, J.Math. Phys. 7, 781 (1966).

    ADS  Article  Google Scholar 

  24. 24.

    V. V. Kuryshkin, PhD Diss. (PFU, Moscow, 1969).

    Google Scholar 

  25. 25.

    A.V. Zorin and L. A. Sevastianov, Bull. of PFUR, Ser. MIPh., No. 12, 64 (2004).

    Google Scholar 

  26. 26.

    A. V. Zorin, Bull. PFUR, Ser. MIPh., No. 4, 38 (2015).

    Google Scholar 

  27. 27.

    A. V. Zorin, Bull. PFUR, Ser. Appl. Comp. Math., No. 3 (1), 121 (2004).

    Google Scholar 

  28. 28.

    M. Reed and B. Simon, Methods of Modern Mathematical Physics (Academ. Press, New York, 1978), Vol.4.

  29. 29.

    F. A. Berezin and M. A. Shubin, The Schrödinger Equation (Kluwer Acad., Dordrecht, 1991).

    Google Scholar 

  30. 30.

    T. Kato, Perturbation Theory for Linear Operators (Springer-Verlag, Berlin, Heidelberg, 1966).

    Google Scholar 

  31. 31.

    F. Rellich, Perturbation Theory of Eigenvalue Problems, Lecture Notes (New York Univ., New York, 1953).

    Google Scholar 

  32. 32.

    K. Jörgens and F. Rellih, Eigenwertheorie Gewohnlicher Differentialoperatoren (Springer, Berlin, 1976).

    Google Scholar 

  33. 33.

    E. P. Zhidkov and A. V. Zorin, Report P11-2000-316, JINR (Dubna, 2000).

    Google Scholar 

  34. 34.

    E. P. Zhidkov and A.V. Zorin, J. Comput. Methods Sci. Eng. 2, 293 (2002).

    Google Scholar 

  35. 35.

    A. V. Zorin and L. A. Sevastianov, Bull. PFUR, Ser. Appl. Comp.Math., No. 1, 134 (2002).

    Google Scholar 

  36. 36.

    M. Rotenberg, Adv. At.Molec. Phys. 6, 233 (1970).

    ADS  Article  Google Scholar 

  37. 37.

    V. M. Klechkovskii, The Distribution of Atomic Electrons and Typically Sequential Filling (n + l) Groups (Moscow, Atomizdat, 1968) [in Russian].

    Google Scholar 

  38. 38.

    Yu. N. Demkov and V.N. Ostrovskii, Zh. Eksp. Teor. Fiz. 60, 2011 (1971) [Sov. Phys. JETP 33, 1083 (1971)].

    Google Scholar 

  39. 39.

    Yu. N. Demkov and V.N. Ostrovskii, Zh. Eksp. Teor. Fiz. 62, 125 (1972) [Sov. Phys. JETP 35, 66 (1972)].

    Google Scholar 

  40. 40.

    Y. Kitagawara and A. O. Barut, J. Phys. B 16, 3305 (1983).

    ADS  MathSciNet  Article  Google Scholar 

  41. 41.

    Y. Kitagawara and A. O. Barut, J. Phys. B 17, 4251 (1984).

    ADS  MathSciNet  Article  Google Scholar 

  42. 42.

    A. V. Gorbachev et al., Bull. PFUR. Ser. MIPh., No. 2, 44 (2016).

    Google Scholar 

  43. 43.

    I. I. Sobel’man, An Introduction to the Theory of Atomic Spectra (Pergamon, New York, 1972).

    Google Scholar 

  44. 44.

    M. G. Veselov and L. N. Labzovsky, The Structure of the Electron Shells (Nauka, Moscow, 1986) [In russian].

    Google Scholar 

  45. 45.

    A. A. Gusev et al., Bull. PFUR, Ser. MIPh., No. 3(4), 76 (2007).

    Google Scholar 

  46. 46.

    A.V. Zorin et al., Lect. Notes Comp. Sci. 3401, 613 (2005).

    Article  Google Scholar 

  47. 47.

    Atomic Spectra Database Levels, http://pfysics.-hist.gov/PhysRefData/Handbook/index.html.

  48. 48.

    www.maplesoft.com.

  49. 49.

    A. V. Zorin, Bull. PFUR, Ser. MIPh., No. 4, 68 (2008).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. A. Sevastianov.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sevastianov, L.A., Zorin, A.V. The computer-based model of quantum measurements. Phys. Atom. Nuclei 80, 774–780 (2017). https://doi.org/10.1134/S1063778817040238

Download citation