Skip to main content
Log in

Ternary generalization of Pauli’s principle and the Z 6-graded algebras

  • Elementary Particles and Fields Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

We show how the discrete symmetries Z 2 and Z 3 combined with the superposition principle result in the SL(2,C) symmetry of quantum states. The role of Pauli’s exclusion principle in the derivation of the SL(2,C) symmetry is put forward as the source of the macroscopically observed Lorentz symmetry; then it is generalized for the case of the Z 3 grading replacing the usual Z 2 grading, leading to ternary commutation relations. We discuss the cubic and ternary generalizations of Grassmann algebra. Invariant cubic forms on such algebras are introduced, and it is shown how the SL(2,C) group arises naturally in the case of two generators only, as the symmetry group preserving these forms. The wave equation generalizing the Dirac operator to the Z 3-graded case is introduced, whose diagonalization leads to a sixthorder equation. The solutions of this equation cannot propagate because their exponents always contain non-oscillating real damping factor. We show how certain cubic products can propagate nevertheless. The model suggests the origin of the color SU(3) symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Seiberg, hep-th/0601234.

  2. E. Verlinde, J. High Energy Phys. 2011 (4), 29 (2011).

    Article  Google Scholar 

  3. N. D. Mermin, Phys. Today 62 (5), 8 (2009).

    Article  ADS  Google Scholar 

  4. M. Born and P. Jordan, Z. Phys. 34, 858 (1925).

    Article  ADS  Google Scholar 

  5. W. Heisenberg, Z. Phys. 33, 879 (1925).

    Article  ADS  Google Scholar 

  6. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, Princeton, 1996).

    MATH  Google Scholar 

  7. M. Dubois-Violette, R. Kerner, and J. Madore, J. Math. Phys. 31, 316 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Dubois-Violette, R. Kerner, and J. Madore, J. Math. Phys. 31, 323 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Dubois-Violette, J. Madore, and R. Kerner, Class. Quantum Grav. 8, 1077 (1991).

    Article  ADS  Google Scholar 

  10. W. Pauli, Phys. Rev. 58, 716 (1940).

    Article  ADS  Google Scholar 

  11. P. A. M. Dirac, The Principles of Quantim Mechanics, 4th ed. (Oxford Univ. Press, Oxford, 1958).

    Google Scholar 

  12. M. Gell-Mann and Y. Ne’eman, The Eightfold Way (Benjamin, New York, 1964).

    Google Scholar 

  13. H. J. Lipkin, Preprint WIS-87-47-PH (Weizmann Inst., 1987).

    Google Scholar 

  14. S. Okubo, J. Math. Phys. 34, 3273, 3292 (1993).

    Article  ADS  Google Scholar 

  15. A. Humbert, Comptes Rendus Acad. Sci. Paris 209, 590 (1939).

    Google Scholar 

  16. J. Devisme, Ann. Fac. Sci. Toulouse: Mathematiques, Sér. 3 25, 143 (1933).

    Article  MathSciNet  Google Scholar 

  17. R. Kerner, Comptes Rendus Acad. Sci. Paris 10, 1237 (1991).

    Google Scholar 

  18. R. Kerner, J. Math. Phys. 33 (1), 403 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  19. R. Kerner, Class. Quantum Grav. 14, A203 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  20. V. Abramov, R. Kerner, and B. Le Roy, J. Math. Phys. 38, 1650 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  21. L. Vainerman and R. Kerner, J. Math. Phys. 37, 2553 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  22. R. Kerner, in Proceedings of the 23rd ICGTMP Colloquium, Dubna, Russia, 2000, math-ph/0011023.

    Google Scholar 

  23. R. Kerner and O. Suzuki, Int. J. Geom. Methods Mod. Phys. 09, 1261007 (2012).

    Article  Google Scholar 

  24. R. P. Feynman, Rev. Mod. Phys. 20, 3 (1948).

    Article  Google Scholar 

  25. Y. Nambu, Phys. Rev. D 7, 2405 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  26. C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  27. J. J. Sylvester, Johns Hopkins Circ. J. 3, 7 (1883).

    Google Scholar 

  28. A. Cayley, Cambridge Math. Journ. 4, 1 (1845).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Kerner.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerner, R. Ternary generalization of Pauli’s principle and the Z 6-graded algebras. Phys. Atom. Nuclei 80, 529–541 (2017). https://doi.org/10.1134/S1063778817030115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778817030115

Navigation