Skip to main content
Log in

Study of the (p, γ) and (α, γ) reactions for 96,98,104Ru and 112,114,116Sn at astrophysically relevant energies

  • Nuclei Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Cross section and S factor of the proton- and alpha-induced reactions have been studied for the Ruthenium and tin isotopes in the effective energy range, i.e. Gamow window. These reactions are important for developing the understanding for nucleosynthesis, particularly for the synthesis of p nuclei (p process). In this work, cross sections and S factor have been calculated through TALYS in Hauser–Feshbach formalism using nuclear densities calculated in relativistic mean field (RMF) formalism. Calculated results of cross sections, S factor and nuclear structure have been compared with existing theoretical as well as experimental results available and are found to be in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Rapp et al., Phys. Rev. C 66, 015803 (2002).

    Article  ADS  Google Scholar 

  2. Awanish Bajpeyi, A. J. Koning, A. Shukla, and S. Aberg, Eur. Phys. J. A 51, 157 (2015).

    Article  ADS  Google Scholar 

  3. E. Margaret Burbidge, G. R. Burbidge, William A. Fowler, and F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).

    Article  ADS  Google Scholar 

  4. A. G. W. Cameron, Chalk River Rep. CRL, Vol. 41 (Atomic Energy Can., 1957).

    Google Scholar 

  5. M. Arnould and S. Goriely, Phys. Rept. 384, 1 (2003).

    Article  ADS  Google Scholar 

  6. T. Rauscher et al., Rep. Prog. Phys. 76, 066201 (2013).

    Article  ADS  Google Scholar 

  7. J. Bork, H. Schatz, F. Käppeler, and T. Rauscher, Phys. Rev. C 58, 1 (1998).

    Article  Google Scholar 

  8. M. Rayet et al., Astron. Astrophys. 298, 517 (1995).

    ADS  Google Scholar 

  9. T. Rauscher, Phys. Rev. C 73, 015804 (2006).

    Article  ADS  Google Scholar 

  10. T. Sauter and F. Käppeler, Phys. Rev. C 55, 6 (1997).

    Article  Google Scholar 

  11. W. Rapp et al., Astrophys. J. 653, 474 (2006).

    Article  ADS  Google Scholar 

  12. I. Dillmann et al., J. Phys. G 35, 014029 (2008).

    Article  ADS  Google Scholar 

  13. T. Rauscher, Phys. Rev. C 81, 045807 (2010).

    Article  ADS  Google Scholar 

  14. T. Rauscher and F.-K. Thielemann, At. Data Nucl. Data Tables 75, 1 (2000).

    Article  ADS  Google Scholar 

  15. W. Rapp et al., Phys. Rev. C 78, 025804 (2008).

    Article  ADS  Google Scholar 

  16. K. Vogt et al., Phys. Rev. C 63, 055802 (2001).

    Article  ADS  Google Scholar 

  17. A. Simon et al., Phys. Rev. C 87, 055802 (2013).

    Article  ADS  Google Scholar 

  18. I. Precup et al., Rom. Rep. Phys. 64, 64 (2012).

    Google Scholar 

  19. O. Ershova et al., PoS (NIC XI), 232 (2010).

  20. P. Mohr, AIP Conf. Proc. 704, 532 (2004).

  21. W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952).

    Article  ADS  Google Scholar 

  22. T. Rauscher, Int. J. Mod. Phys. E 20, 1071 (2011).

    Article  ADS  Google Scholar 

  23. http://nucastro. org/nonsmoker. html.

  24. A. J. Koning, S. Hilaire, and M. C. Duijvestijn, TALYS-1. 0, in Proceedings of the International Conference on Nuclear Data for Science and Technology—ND2007, Apr. 22–27, 2007, Nice, France, Ed. by O. Bersillon, F. Gunsing, E. Bauge, et al. (EDP Sciences, 2008), p. 211.

  25. J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rev. C 16, 80 (1977).

    Article  ADS  Google Scholar 

  26. A. Lejeune, Phys. Rev. C 21, 1107(R) (1980).

    Article  ADS  Google Scholar 

  27. A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).

    Article  ADS  Google Scholar 

  28. L. McFadden and G. R. Satchler, Nucl. Phys. 84, 177 (1966).

    Article  Google Scholar 

  29. S. Watanabe, Nucl. Phys. 8, 484 (1958).

    Article  Google Scholar 

  30. E. Bauge, J. P. Delaroche, and M. Girod, Phys. Rev. C 63, 024607 (2001).

    Article  ADS  Google Scholar 

  31. P. Demetriou, C. Grama, and S. Goriely, Nucl. Phys. A 707, 253 (2002).

    Article  ADS  Google Scholar 

  32. D. M. Brink, Nucl. Phys. 4, 215 (1957).

    Article  Google Scholar 

  33. P. Axel, Phys. Rev. 126, 671 (1962).

    Article  ADS  Google Scholar 

  34. T. Rauscher, F.-K. Thielemann, and K. L. Kratz, Phys. Rev. C 56, 1613 (1997).

    Article  ADS  Google Scholar 

  35. A. J. Koning, S. Hilaire, and S. Goriely, Nucl. Phys. A 810, 13 (2008).

    Article  ADS  Google Scholar 

  36. D. Mocelj et al., Nucl. Phys. A 758, 154 (2005).

    Article  ADS  Google Scholar 

  37. P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).

    Article  ADS  Google Scholar 

  38. G. Audi, A. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003).

    Article  ADS  Google Scholar 

  39. J. Pearson, R. Nayak, and S. Goriely, Phys. Lett. B 387, 455 (1996).

    Article  ADS  Google Scholar 

  40. S. Goriely, M. Samyn, and J. M. Pearson, Nucl. Phys. A 773, 279 (2006).

    Article  ADS  Google Scholar 

  41. F.-K. Thielemann et al., Nucl. Phys. A 751, 301 (2005).

    Article  ADS  Google Scholar 

  42. P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).

    Article  ADS  Google Scholar 

  43. P. G. Reinhard, Rep. Prog. Phys. 52, 439 (1989).

    Article  ADS  Google Scholar 

  44. A. Shukla, S. Aberg, and S. K. Patra, J. Phys. G 38, 095103 (2011).

    Article  ADS  Google Scholar 

  45. R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).

    Google Scholar 

  46. S. K. Patra and C. R. Praharaj, Phys. Rev. C 44, 2552 (1991).

    Article  ADS  Google Scholar 

  47. M. Del Estal, M. Centelles, X. Vinas, and S. K. Patra, Phys. Rev. C 63, 024314 (2001).

    Article  ADS  Google Scholar 

  48. C. J. Horowitz and B. D. Serot, Nucl. Phys. A 368, 503 (1981).

    Article  ADS  Google Scholar 

  49. B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).

    Google Scholar 

  50. M. Rufa et al., Phys. Rev. C 38, 390 (1988).

    Article  ADS  Google Scholar 

  51. P.-G. Reinhard, Z. Phys. A 329, 257 (1993).

  52. Y. K. Gambhir, P. Ring, and A. Thimet, Ann. Phys. (N. Y.) 198, 132 (1990).

    Article  ADS  Google Scholar 

  53. G. A. Lalazissis, P. Ring, et al., Phys. Lett. B 671, 36 (2009).

    Article  ADS  Google Scholar 

  54. A. Shukla et al., Phys. Rev. C 76, 034601 (2007).

    Article  ADS  Google Scholar 

  55. A. Shukla, S. Aberg, and A. Bajpeyi, Phys. Atom. Nucl. 79, 11 (2016).

    Article  ADS  Google Scholar 

  56. http://www.nndc.bnl.gov/masses/.

  57. I. Angeli, At. Data Nucl. Data Tables 87, 185206 (2004).

    Article  Google Scholar 

  58. F. R. Chloupek et al., Nucl. Phys. A 652, 391 (1999).

    Article  ADS  Google Scholar 

  59. M. A. Famiano et al., Nucl. Phys. A 802, 26 (2008).

    Article  ADS  Google Scholar 

  60. N. Özkan et al., Nucl. Phys. A 710, 469 (2002).

    Article  ADS  Google Scholar 

  61. N. Özkan et al., Phys. Rev. C 75, 025801 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shukla.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajpeyi, A., Shukla, A., Koning, A.J. et al. Study of the (p, γ) and (α, γ) reactions for 96,98,104Ru and 112,114,116Sn at astrophysically relevant energies. Phys. Atom. Nuclei 80, 402–411 (2017). https://doi.org/10.1134/S1063778817030024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778817030024

Navigation