Skip to main content
Log in

Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems

  • Physics of Gas Discharge and Plasma
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The results of calculating the degree of ionization, the pressure, and the specific internal energy of aluminum plasma in a wide temperature range are presented. The TERMAG computational code based on the Thomas–Fermi model was used at temperatures Т > 105 K, and the ionization equilibrium model (Saha model) was applied at lower temperatures. Quantitatively similar results were obtained in the temperature range where both models are applicable. This suggests that the obtained data may be joined to produce a wide-range equation of state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Ryzhkov, Bull. Russ. Acad. Sci.: Phys. 78, 456 (2014).

    Article  Google Scholar 

  2. A. A. Esaulov and P. V. Sasorov, Plasma Phys. Rep. 23, 576 (1997).

    ADS  Google Scholar 

  3. A. Yu. Chirkov and S. V. Ryzhkov, J. Fusion Energy 31, 7 (2012).

    Article  ADS  Google Scholar 

  4. I. Yu. Kostyukov and S. V. Ryzhkov, Plasma Phys. Rep. 37, 1092 (2011).

    Article  ADS  Google Scholar 

  5. V. V. Kuzenov and S. V. Ryzhkov, Probl. At. Sci. Technol., No. 1 (83), 12 (2013).

    Google Scholar 

  6. O. V. Gotchev, P. Y. Chang, J. P. Knauer, et al., Phys. Rev. Lett. 103, 215004 (2009).

    Article  ADS  Google Scholar 

  7. D. Nakamura, H. Sawabe, and S. Takeyama, Rev. Sci. Instrum. 85, 036102 (2014).

    Article  ADS  Google Scholar 

  8. D. A. Frank-Kamenetskii, Lectures on Plasma Physics (Atomizdat, Moscow, 1968) [in Russian].

    Google Scholar 

  9. A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of Hot Dense Matter. Methods for Computation Opacity and Equation of State (Birkhauser, Berlin, 2005).

    Book  MATH  Google Scholar 

  10. V. V. Kuzenov, S. V. Ryzhkov, V. V. Shumaev, High Temperature Material Processes: An International Quarterly of High Technology Plasma Processes 18, Nos. 1–2, 99 (2014).

    Article  Google Scholar 

  11. C. Liu and S. Zhu, J. Comput. Appl. Math. 282, 251 (2015).

    Article  MathSciNet  Google Scholar 

  12. A. Aftalion, B. Noris, and C. Sourdis, Commun. Math. Phys. 336, 509 (2015).

    Article  ADS  Google Scholar 

  13. L. G. Stanton and M. S. Murillo, Phys. Rev. E 91, 033104 (2015).

    Article  ADS  Google Scholar 

  14. R. F. Ribeiro, D. Lee, A. Cangi, et al., Phys. Rev. Lett. 114, 050401 (2015).

    Article  ADS  Google Scholar 

  15. B. A. Malomed and D. E. Pelinovsky, Appl. Math. Lett. 40, 45 (2015).

    Article  MathSciNet  Google Scholar 

  16. R. Belvedere, J. A. Rueda, and R. Ruffini, Astrophys. J. 799, 23 (2015).

    Article  ADS  Google Scholar 

  17. M. Rusek, H. Lagadec, and T. Blenski, Phys. Rev. A 63, 013203 (2000).

    Article  ADS  Google Scholar 

  18. R. Ying and G. Kalman, Phys. Rev. A 40, 3927 (1989).

    Article  ADS  Google Scholar 

  19. V. V. Kuzenov, S. V. Ryzhkov, and V. V. Shumaev, Appl. Phys., No. 3, 22 (2014).

    Google Scholar 

  20. N. N. Kalitkin and I. A. Kozlitin, Math. Models Comput. Simul. 1, 200 (2009).

    Article  Google Scholar 

  21. V. V. Kuzenov, S. V. Ryzhkov, and V. V. Shumaev, Probl. At. Sci. Technol., No. 1 (95), 97 (2015).

    Google Scholar 

  22. S. Dyachkov and P. Levashov, Phys. Plasmas 21, 052702 (2014).

    Article  ADS  Google Scholar 

  23. V. V. Kuzenov and V. V. Shumaev, Appl. Phys., No. 2, 32 (2015).

    Google Scholar 

  24. V. V. Kuzenov, S. V. Ryzhkov, and V. V. Shumaev, Probl. At. Sci. Technol., No. 4 (98), 53 (2015).

    Google Scholar 

  25. Yu. V. Boyko, Yu. M. Grishin, A. S. Kamrukov, et al., Thermodynamic and Optical Properties of Ionized Gases at Temperatures to 100 eV (CRC, Boca Raton, FL, 1991).

    Google Scholar 

  26. S. Bhattacharyya, J. K. Saha, and T. K. Mukherjee, Phys. Rev. A 91, 042515 (2015).

    Article  ADS  Google Scholar 

  27. C. E. Moore, Atomic Energy Levels (National Bureau of Standards, USA, 1949), Vol. 1.

    Google Scholar 

  28. N. N. Kalitkin, L. V. Kuzmina, and V. S. Rogov, Tables of Thermodynamic Function and Transport Coefficients of Plasma (Inst. Prikl. Mat. AN, Moscow, 1972) [in Russian].

    Google Scholar 

  29. V. E. Fortov and I. T. Iakubov, The Physics of Non-Ideal Plasma (World Scientific, Singapore, 1999).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shumaev.

Additional information

Original Russian Text © V.V. Shumaev, 2015, published in Yadernaya Fizika i Inzhiniring, 2015, Vol. 6, Nos. 5–6, pp. 309–314.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shumaev, V.V. Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems. Phys. Atom. Nuclei 79, 1414–1418 (2016). https://doi.org/10.1134/S1063778816090088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778816090088

Keywords

Navigation