Skip to main content
Log in

Tokamak DEMO-FNS: Concept of magnet system and vacuum chamber

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The level of knowledge accumulated to date in the physics and technologies of controlled thermonuclear fusion (CTF) makes it possible to begin designing fusion—fission hybrid systems that would involve a fusion neutron source (FNS) and which would admit employment for the production of fissile materials and for the transmutation of spent nuclear fuel. Modern Russian strategies for CTF development plan the construction to 2023 of tokamak-based demonstration hybrid FNS for implementing steady-state plasma burning, testing hybrid blankets, and evolving nuclear technologies. Work on designing the DEMO-FNS facility is still in its infancy. The Efremov Institute began designing its magnet system and vacuum chamber, while the Kurchatov Institute developed plasma-physics design aspects and determined basic parameters of the facility. The major radius of the plasma in the DEMO-FNS facility is R = 2.75 m, while its minor radius is a = 1 m; the plasma elongation is k 95 = 2. The fusion power is P FUS = 40 MW. The toroidal magnetic field on the plasma-filament axis is B t0 = 5 T. The plasma current is I p = 5 MA. The application of superconductors in the magnet system permits drastically reducing the power consumed by its magnets but requires arranging a thick radiation shield between the plasma and magnet system. The central solenoid, toroidal-field coils, and poloidal-field coils are manufactured from, respectively, Nb3Sn, NbTi and Nb3Sn, and NbTi. The vacuum chamber is a double-wall vessel. The space between the walls manufactured from 316L austenitic steel is filled with an iron—water radiation shield (70% of stainless steel and 30% of water).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Azizov, G. G. Gladush, A. V. Lopatkin, and I. B. Lukasevich, At. Energy 110, 93 (2011).

    Article  Google Scholar 

  2. E. Velikhov and E. Azizov, in Proceedings of the International Workshop on Magnetic Fusion Energy (MFE) Roadmapping in the ITER Era, September 7–10, 2011, Princeton, NJ, USA.

  3. E. P. Velikhov, in Proceedings of the 25 IAEA Fusion Energy Conference, St. Petersburg, Russia, Oct. 13–18, 2014, O/3.

    Google Scholar 

  4. B. V. Kuteev et al., Nucl. Fusion 55 (2015, in press).

    Google Scholar 

  5. B. V. Kuteev et al., Update of Russian Federation Roadmap. http://www-naweb.iaea.org/napc/physics/ meetings/TM45256/talks/Kuteev.pdf.

  6. A. Yu. Dnestrovskij, B. V. Kuteev, A. S. Bykov, A. A. Ivanov, V. E. Lukash, S. Yu. Medvedev, V. Yu. Sergeev, D. Yu. Sychugov, and R. R. Khayrutdinov, Nucl. Fusion 55, 063007 (2015). doi 10.1088/0029-5515/55/6/063007

    Article  ADS  Google Scholar 

  7. V. A. Belyakov and A. B. Mineev, Tokamak: Euqilibrium Plasma Configurations, The School-Book (SPb. Gos. Univ., St. Petersburg, 2010) [in Russian].

    Google Scholar 

  8. A. A. Ivanov, R. R. Khayrutdinov, S. Yu. Medvedev, and Yu. Yu. Poshekhonov, in Proceedings of the 32nd European Physical Society Conference on Plasma Physics, Tarragona, Spain, 2005, 29C P-5.063. http://epsppd.epfl.ch/Tarragona/pdf/P5_063.pdf.

    Google Scholar 

  9. A. A. Ivanov, A. A. Martynov, S. Yu. Medvedev, Yu. Yu. Poshekhonov, S. V. Konovalov, and R. R. Khairutdinov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sint. 37 (1), 80 (2014).

    Google Scholar 

  10. D. Yu. Sychugov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sint., No. 4, 85 (2008).

    Google Scholar 

  11. D. Yu. Sychugov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sint., No. 3, 67 (2009).

    Google Scholar 

  12. R. R. Khayrutdinov and V. E. Lukash, J. Comput. Phys. 109, 193 (1993). http://www.sciencedirect.com/science/article/pii/S0021999183712118.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Azizov.

Additional information

Original Russian Text © E.A. Azizov, S.S. Ananyev, V.A. Belyakov, E.N. Bondarchuk, A.A. Voronova, A.A. Golikov, P.R. Goncharov, A.Yu. Dnestrovskij, E.R. Zapretilina, D.P. Ivanov, A.A. Kavin, I.V. Kedrov, A.V. Klischenko, B.N. Kolbasov, S.V. Krasnov, A.I. Krylov, V.A. Krylov, E.G. Kuzmin, B.V. Kuteev, A.N. Labusov, V.E. Lukash, I.I. Maximova, S.Yu. Medvedev, A.B. Mineev, V.P. Muratov, V.S. Petrov, I.Yu. Rodin, V.Yu. Sergeev, A.V. Spitsyn, V.N. Tanchuk, V.A. Trofimov, R.R. Khayrutdinov, M.V. Khokhlov, Yu.S. Shpanskiy, 2015, published in Voprosy Atomnoi Nauki i Tekhniki, Seriya: Termoyadernyi Sintez, 2015, Vol. 38, No. 2, pp. 5–18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizov, E.A., Ananyev, S.S., Belyakov, V.A. et al. Tokamak DEMO-FNS: Concept of magnet system and vacuum chamber. Phys. Atom. Nuclei 79, 1125–1136 (2016). https://doi.org/10.1134/S1063778816070036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778816070036

Keywords

Navigation