Skip to main content
Log in

Self-consistent theory of finite Fermi systems and Skyrme–Hartree–Fock method

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Recent results obtained on the basis of the self-consistent theory of finite Fermi systems by employing the energy density functional proposed by Fayans and his coauthors are surveyed. These results are compared with the predictions of Skyrme–Hartree–Fock theory involving several popular versions of the Skyrme energy density functional. Spherical nuclei are predominantly considered. The charge radii of even and odd nuclei and features of low-lying 2+ excitations in semimagic nuclei are discussed briefly. The single-particle energies ofmagic nuclei are examined inmore detail with allowance for corrections to mean-field theory that are induced by particle coupling to low-lying collective surface excitations (phonons). The importance of taking into account, in this problem, nonpole (tadpole) diagrams, which are usually disregarded, is emphasized. The spectroscopic factors of magic and semimagic nuclei are also considered. In this problem, only the surface term stemming from the energy dependence induced in the mass operator by the exchange of surface phonons is usually taken into account. The volume contribution associated with the energy dependence initially present in the mass operator within the self-consistent theory of finite Fermi systems because of the exchange of high-lying particle–hole excitations is also included in the spectroscopic factor. The results of the first studies that employed the Fayans energy density functional for deformed nuclei are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Soloviev, Theory of Atomic Nuclei: Quasiparticle and Phonons (Energoatomizdat, Moscow, 1989; Inst. of Physics, Bristol, 1992).

    Google Scholar 

  2. D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).

    Article  ADS  Google Scholar 

  3. J. Dechargé and D. Gogny, Phys. Rev. C 21, 1568 (1980).

    Article  ADS  Google Scholar 

  4. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  5. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  ADS  Google Scholar 

  6. S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. Lett. 102, 152503 (2009).

    Article  ADS  Google Scholar 

  7. S. Goriely. http://www-astro.ulb.ac.be/bruslib/nucdata/.

  8. J. Bartel, P. Quentin, M. Brack, et al., Nucl. Phys. A 386, 79 (1982).

    Article  ADS  Google Scholar 

  9. E. Chabanat, P. Bonche, P. Haensel, et al., Nucl. Phys. A 635, 231 (1998).

    Article  ADS  Google Scholar 

  10. M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).

    Article  ADS  Google Scholar 

  11. M. Kortelainen, J. McDonnell, W. Nazarewicz, et al., Phys. Rev. C 85, 024304 (2012).

    Article  ADS  Google Scholar 

  12. P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).

    Article  ADS  Google Scholar 

  13. A. V. Afanasjev, S. E. Agbemava, D. Ray, and P. Ring, Phys. Rev. C 91, 014324 (2015).

    Article  ADS  Google Scholar 

  14. M. Baldo, C. Maieron, P. Schuck, and X. Viňas, Nucl. Phys. A 736, 241 (2004).

    Article  ADS  Google Scholar 

  15. M. Baldo, P. Schuck, and X. Viňas, Phys. Lett. B 663, 390 (2008).

    Article  ADS  Google Scholar 

  16. M. Baldo, L. M. Robledo, P. Schuck, and X. Viňas, Phys. Rev. C 87, 064305 (2013).

    Article  ADS  Google Scholar 

  17. V. A. Khodel and E. E. Saperstein, Phys. Rep. 92, 183 (1982).

    Article  ADS  Google Scholar 

  18. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei, 1st ed. (Nauka, Moscow, 1965; Wiley, New York, 1967).

    Google Scholar 

  19. S. A. Fayans and V. A. Khodel’, JETP Lett. 17, 444 (1973).

    ADS  Google Scholar 

  20. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei, 2nd ed. (Nauka, Moscow, 1983).

    Google Scholar 

  21. N. V. Gnezdilov, E. E. Saperstein, and S. V. Tolokonnikov, Europhys. Lett. 107, 62001 (2014).

    Article  ADS  Google Scholar 

  22. N. V. Gnezdilov, E. E. Saperstein, and E. E. Tolokonnikov, Phys. At. Nucl. 78, 24 (2015).

    Article  Google Scholar 

  23. V. A. Khodel, E. E. Saperstein, and M. V. Zverev, Nucl. Phys. A 465, 397 (1987).

    Article  ADS  Google Scholar 

  24. E. E. Saperstein and S. V. Tolokonnikov, JETP Lett. 68, 553 (1998).

    Article  ADS  Google Scholar 

  25. E. E. Saperstein and S. V. Tolokonnikov, Phys. At. Nucl. 62, 1302 (1999).

    Google Scholar 

  26. A. V. Smirnov, S. V. Tolokonnikov, and S. A. Fayans, Sov. J. Nucl. Phys. 48, 995 (1988).

    Google Scholar 

  27. D. J. Horen, G. R. Satchler, S. A. Fayans, and E. L. Trykov, Nucl. Phys. A 600, 193 (1996).

    Article  ADS  Google Scholar 

  28. I. N. Borzov, S. A. Fayans, E. Kr¨omer, and D. Zawischa, Z. Phys. A 335, 117 (1996).

    ADS  Google Scholar 

  29. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).

    Article  ADS  Google Scholar 

  30. S. V. Tolokonnikov and E. E. Saperstein, Phys. At. Nucl. 73, 1684 (2010).

    Article  Google Scholar 

  31. E. E. Saperstein and S. V. Tolokonnikov, Phys. At. Nucl. 74, 1277 (2011).

    Article  Google Scholar 

  32. I. N. Borzov, E. E. Saperstein, and S. V. Tolokonnikov, Phys. At. Nucl. 71, 469 (2008).

    Article  Google Scholar 

  33. I. N. Borzov, E. E. Saperstein, S. V. Tolokonnikov, et al., Eur. Phys. J. A 45, 159 (2010).

    Article  ADS  Google Scholar 

  34. S. V. Tolokonnikov, S. Kamerdzhiev, D. Voytenkov, S. Krewald, and E. E. Saperstein, Phys. Rev. C 84, 064324 (2011).

    Article  ADS  Google Scholar 

  35. S. V. Tolokonnikov, S. Kamerdzhiev, S. Krewald, E. E. Saperstein, and D. Voitenkov, Eur. Phys. J. A 48, 70 (2012).

    Article  ADS  Google Scholar 

  36. S. Kamerdzhiev, S. Krewald, S. Tolokonnikov, E. E. Saperstein, and D. Voitenkov, EPJ Web Conf. 38, 10002 (2012).

    Article  Google Scholar 

  37. S. V. Tolokonnikov, S. Kamerdzhiev, S. Krewald, E. E. Saperstein, and D. Voitenkov, EPJ Web Conf. 38, 04002 (2012).

    Article  Google Scholar 

  38. E. E. Saperstein, S. Kamerdzhiev, S. Krewald, J. Speth, and S. V. Tolokonnikov, Europhys. Lett. 103, 42001 (2013).

    Article  ADS  Google Scholar 

  39. E. E. Saperstein, S. Kamerdzhiev, S. Krewald, J. Speth, and S. V. Tolokonnikov, JETP Lett. 98, 562 (2013).

    Article  ADS  Google Scholar 

  40. E. E. Saperstein, O. I. Achakovskiy, S. P. Kamerdzhiev, S. Krewald, J. Speth, and S. V. Tolokonnikov, Phys. At. Nucl. 77, 1033 (2014).

    Article  Google Scholar 

  41. D. Voitenkov, S. Kamerdzhiev, S. Krewald, E. E. Saperstein, and S. V. Tolokonnikov, Phys. Rev. C 85, 054319 (2012).

    Article  ADS  Google Scholar 

  42. N. V. Gnezdilov, I. N. Borzov, E. E. Saperstein, and S. V. Tolokonnikov, Phys. Rev. C 89, 034304 (2014).

    Article  ADS  Google Scholar 

  43. E. E. Saperstein and S. V. Tolokonnikov, EPJ Web Conf. 107, 02001 (2016); arXiv: 1507. 06134 [nuclth].

    Article  Google Scholar 

  44. S. V. Tolokonnikov, Yu. S. Lutostansky, and E. E. Saperstein, Phys. At. Nucl. 76, 708 (2013).

    Article  Google Scholar 

  45. S. V. Tolokonnikov, I. N. Borzov, M. Kortelainen, Yu. S. Lutostansky, and E. E. Saperstein, J. Phys. G 42, 075102 (2015).

    Article  ADS  Google Scholar 

  46. S. A. Fayans, JETP Lett. 68, 169 (1998).

    Article  ADS  Google Scholar 

  47. M. V. Stoitsov, N. Schunck, M. Kortelainen, et al., Comput. Phys. Commun. 184, 1592 (2013).

    Article  ADS  Google Scholar 

  48. S. V. Tolokonnikov, I. N. Borzov, M. Kortelainen, Yu. S. Lutostansky, and E. E. Saperstein, EPJWeb Conf. 107, 02003 (2016); arXiv: 1507.06607 [nucl-th].

    Article  Google Scholar 

  49. V. A. Khodel, E. E. Saperstein, and M. V. Zverev, Nucl. Phys. A 465, 397 (1987).

    Article  ADS  Google Scholar 

  50. L. N. Oliveira, E. K. U. Gross, and W. Kohn, Phys. Rev. Lett. 60, 2430 (1988).

    Article  ADS  Google Scholar 

  51. Aurel Bulgac and Yongle Yu, Phys. Rev. Lett. 88, 042504 (2002).

    Article  ADS  Google Scholar 

  52. Yongle Yu and Aurel Bulgac, Phys. Rev. Lett. 90, 222501 (2003).

    Article  ADS  Google Scholar 

  53. E. E. Sapershteıň and M. A. Troitskiĭ, Sov. J. Nucl. Phys. 1, 284 (1965).

    Google Scholar 

  54. M. V. Zverev and E. E. Sapershteıň, Sov. J. Nucl. Phys. 42, 683 (1985).

    Google Scholar 

  55. S. T. Belyaev, A. V. Smirnov, S. V. Tolokonnikov, and S. A. Fayans, Sov. J. Nucl. Phys. 45, 783 (1987).

    Google Scholar 

  56. P. Klüpfel, P.-G. Reinhard, T. J. Bürvenich, and J. A. Maruhn, Phys. Rev. C 79, 034310 (2009).

    Article  ADS  Google Scholar 

  57. M. V. Zverev, V. I. Kuprikov, E. E. Sapershteıň, et al., Sov. J. Nucl. Phys. 46, 249 (1987).

    Google Scholar 

  58. A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. 2: Nuclear Deformations (Benjamin, New York, 1974).

    Google Scholar 

  59. S. V. Tolokonnikov, I. N. Borzov, M. Kortelainen, Yu. S. Lutostansky, and E. E. Saperstein, Phys. At. Nucl. 79, 21 (2016).

    Article  Google Scholar 

  60. I. Angeli, Yu. P. Gangrsky, K. P. Marinova, et al., J. Phys. G 36, 085102 (2009).

    Article  ADS  Google Scholar 

  61. V. A. Khodel, A. P. Platonov, and E. E. Saperstein, J. Phys. G 8, 967 (1982).

    Article  ADS  Google Scholar 

  62. H. de Vries, C. W. de Jager, and C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).

    Article  ADS  Google Scholar 

  63. J. Terasaki, J. Engel, and G. F. Bertsch, Phys. Rev. C 78, 044311 (2008).

    Article  ADS  Google Scholar 

  64. S. Raman, C. W. Nestor, Jr., and P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001).

    Article  ADS  Google Scholar 

  65. D. C. Radford et al., Nucl. Phys. A 752, 264 (2005).

    Article  ADS  Google Scholar 

  66. J. Cederkäll et al., Phys. Rev. Lett. 98, 172501 (2007).

    Article  ADS  Google Scholar 

  67. C. Vaman et al., Phys. Rev. Lett. 99, 162501 (2007).

    Article  ADS  Google Scholar 

  68. A. Ekström et al., Phys. Rev. Lett. 101, 012502 (2008).

    Article  ADS  Google Scholar 

  69. H. Grawe, K. Langanke, and G. Martínez-Pinedo, Rep. Prog. Phys. 70, 1525 (2007).

    Article  ADS  Google Scholar 

  70. A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. 1: Single-Particle Motion (Benjamin, New York, 1969).

    Google Scholar 

  71. V. A. Khodel’, JETP Lett. 16, 291 (1972)

    ADS  Google Scholar 

  72. V. A. Khodel’, JETP Lett. 18, 72 (1973).

    ADS  Google Scholar 

  73. A. P. Platonov, Sov. J. Nucl. Phys. 34, 342 (1981).

    Google Scholar 

  74. E. Litvinova and P. Ring, Phys. Rev. C 73, 044328 (2006).

    Article  ADS  Google Scholar 

  75. Li-Gang Cao, G. Colò, H. Sagawa, and P. F. Bortignon, Phys. Rev. C 89, 044314 (2014).

    Article  ADS  Google Scholar 

  76. D. Tarpanov, J. Dobaczewski, J. Toivanen, and B. G. Carlsson, Phys. Rev. Lett. 113, 252501 (2014).

    Article  ADS  Google Scholar 

  77. M. Baldo, P. F. Bortignon, G. Coló, et al., J. Phys. G 42, 085109 (2015).

    Article  ADS  Google Scholar 

  78. G. E. Brown, J. A. Evans, and D. J. Thouless, Nucl. Phys. 45, 164 (1963).

    Article  Google Scholar 

  79. V. Bernard and Nguyen van Giai, Nucl. Phys. A 348, 75 (1980).

    Article  ADS  Google Scholar 

  80. http://www.nndc.bnl.gov.

  81. N. Schwierz, I. Wiedenhöver, and A. Volya, arXiv: 0709.3525[nucl-th].

  82. M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz, et al., Phys. Rev. C 68, 054312 (2003).

    Article  ADS  Google Scholar 

  83. J. Erler, N. Birge, M. Kortelainen, et al., Nature 486, 509 (2012).

    Article  ADS  Google Scholar 

  84. R. R. Rodrguez-Guzmán, J. L. Egido, and L. M. Robledo, Phys. Rev. C 69, 054319 (2004).

    Article  ADS  Google Scholar 

  85. M. Bender, P. Bonche, T. Duguet, and P.-H. Heenen, Phys. Rev. C 69, 064303 (2004).

    Article  ADS  Google Scholar 

  86. G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003).

    Article  ADS  Google Scholar 

  87. E. E. Saperstein, I. N. Borzov, Yu. S. Lutostansky, and S. V. Tolokonnikov, JETP Lett. 102, 421 (2015).

    Article  ADS  Google Scholar 

  88. M. Baldo, U. Lombardo, E. E. Saperstein, and M. V. Zverev, Phys. Lett. B 533, 17 (2002).

    Article  ADS  Google Scholar 

  89. E. E. Saperstein and S. V. Tolokonnikov, JETP Lett. 78, 343 (2003).

    Article  ADS  Google Scholar 

  90. M. Baldo, U. Lombardo, E. E. Saperstein, and M. V. Zverev, Phys. Atom. Nucl. 66, 233 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Saperstein.

Additional information

Original Russian Text © E.E. Saperstein, S.V. Tolokonnikov, 2016, published in Yadernaya Fizika, 2016, Vol. 79, No. 6, pp. 703–738.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saperstein, E.E., Tolokonnikov, S.V. Self-consistent theory of finite Fermi systems and Skyrme–Hartree–Fock method. Phys. Atom. Nuclei 79, 1030–1066 (2016). https://doi.org/10.1134/S1063778816060211

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778816060211

Navigation