The interacting quasiparticle–phonon picture and odd–even nuclei. Overview and perspectives


The role of the nucleon correlations in the ground states of even–even nuclei on the properties of low-lying states in odd–even spherical and transitional nuclei is studied. We reason about this subject using the language of the quasiparticle–phonon model which we extend to take account of the existence of quasiparticle⊗phonon configurations in the wave functions of the ground states of the even–even cores. Of paramount importance to the structure of the low-lying states happens to be the quasiparticle–phonon interaction in the ground states which we evaluated using both the standard and the extended random phase approximations. Numerical calculations for nuclei in the barium and cadmium regions are performed using pairing and quadrupole–quadrupole interaction modes which have the dominant impact on the lowest-lying states’ structure. It is found that states with same angular momentum and parity become closer in energy as compared to the predictions of models disregarding the backward amplitudes, which turns out to be in accord with the experimental data. In addition we found that the interaction between the last quasiparticle and the ground-state phonon admixtures produces configurations which contribute significantly to the magnetic dipolemoment of odd-A nuclei. It also reveals a potential for reproducing their experimental values which proves impossible if this interaction is neglected.

This is a preview of subscription content, access via your institution.


  1. 1.

    M. G. Mayer, Phys. Rev. 78, 16 (1950).

    ADS  Article  Google Scholar 

  2. 2.

    V. G. Soloviev, Theory of Complex Nuclei (Pergamon, Oxford, 1976); Theory of Atomic Nuclei: Quasiparticles and Phonons (Institute of Physics, Bristol and Philadelphia, 1992).

    Google Scholar 

  3. 3.

    A. I. Vdovin and V. G. Soloviev, Teor. Mat. Fiz. 19, 275 (1974) [Theor. Math. Phys. 19(2), 275 (1974)].

    Article  Google Scholar 

  4. 4.

    A. I. Vdovin, V. V. Voronov, V. G. Soloviev, and Ch. Stoyanov, Fiz. Elem. Chastits At. Yadra 16, 245 (1985) [Sov. J. Part. Nucl. 16, 246 (1985)].

    Google Scholar 

  5. 5.

    S. Galès, Ch. Stoyanov and A. I. Vdovin, Phys. Rep. 166, 125 (1988).

    ADS  Article  Google Scholar 

  6. 6.

    V. Van der Sluys, D. Van Neck, M. Waroquier, and J. Ryckebusch, Nucl. Phys. A 551, 210 (1993).

    ADS  Article  Google Scholar 

  7. 7.

    S. Mishev and V. V. Voronov, Phys. Rev. C 78, 024310 (2008).

    ADS  Article  Google Scholar 

  8. 8.

    S. Mishev and V. V. Voronov, Phys. Rev. C 82, 64312 (2010).

    ADS  Article  Google Scholar 

  9. 9.

    S. Mishev and V. V. Voronov, Phys. Rev. C 92, 044329 (2015).

    ADS  Article  Google Scholar 

  10. 10.

    J. Li, J. X. Wei, J. N. Hu, et al., Phys. Rev. C 88, 064307 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    D. J. Rowe, Nuclear Collective Motion (Menthuen, London, 1970).

    Google Scholar 

  12. 12.

    C. Z. Khuong, V. G. Soloviev, and V. V. Voronov, J. Phys. G 7, 151 (1981).

    ADS  Article  Google Scholar 

  13. 13.

    I. N. Borzov, E. E. Saperstein, and S. V. Tolokonnikov, Yad. Fiz. 71, 493 (2008) [Phys. Atom. Nucl. 71, 469 (2008)].

    Google Scholar 

  14. 14.

    A. I. Levon, S. N. Fedotkin, and A. I. Vdovin, Yad. Fiz. 43, 1416 (1986) [Sov. J. Nucl. Phys. 43, 912 (1986)].

    Google Scholar 

  15. 15.

    N. J. Stone, At. DataNucl. Data Tables 90, 75 (2005).

    ADS  Article  Google Scholar 

  16. 16.

    D. T. Yordanov et al., Phys. Rev. Lett. 110, 192501 (2013).

    ADS  Article  Google Scholar 

  17. 17.

    S. Mishev, Phys. Rev. C 87, 064310 (2013).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. Mishev.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mishev, S., Voronov, V.V. The interacting quasiparticle–phonon picture and odd–even nuclei. Overview and perspectives. Phys. Atom. Nuclei 79, 851–857 (2016).

Download citation