Physics of Atomic Nuclei

, Volume 79, Issue 6, pp 851–857 | Cite as

The interacting quasiparticle–phonon picture and odd–even nuclei. Overview and perspectives

  • S. Mishev
  • V. V. Voronov
Nuclei Theory


The role of the nucleon correlations in the ground states of even–even nuclei on the properties of low-lying states in odd–even spherical and transitional nuclei is studied. We reason about this subject using the language of the quasiparticle–phonon model which we extend to take account of the existence of quasiparticle⊗phonon configurations in the wave functions of the ground states of the even–even cores. Of paramount importance to the structure of the low-lying states happens to be the quasiparticle–phonon interaction in the ground states which we evaluated using both the standard and the extended random phase approximations. Numerical calculations for nuclei in the barium and cadmium regions are performed using pairing and quadrupole–quadrupole interaction modes which have the dominant impact on the lowest-lying states’ structure. It is found that states with same angular momentum and parity become closer in energy as compared to the predictions of models disregarding the backward amplitudes, which turns out to be in accord with the experimental data. In addition we found that the interaction between the last quasiparticle and the ground-state phonon admixtures produces configurations which contribute significantly to the magnetic dipolemoment of odd-A nuclei. It also reveals a potential for reproducing their experimental values which proves impossible if this interaction is neglected.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. G. Mayer, Phys. Rev. 78, 16 (1950).ADSCrossRefGoogle Scholar
  2. 2.
    V. G. Soloviev, Theory of Complex Nuclei (Pergamon, Oxford, 1976); Theory of Atomic Nuclei: Quasiparticles and Phonons (Institute of Physics, Bristol and Philadelphia, 1992).Google Scholar
  3. 3.
    A. I. Vdovin and V. G. Soloviev, Teor. Mat. Fiz. 19, 275 (1974) [Theor. Math. Phys. 19(2), 275 (1974)].CrossRefGoogle Scholar
  4. 4.
    A. I. Vdovin, V. V. Voronov, V. G. Soloviev, and Ch. Stoyanov, Fiz. Elem. Chastits At. Yadra 16, 245 (1985) [Sov. J. Part. Nucl. 16, 246 (1985)].Google Scholar
  5. 5.
    S. Galès, Ch. Stoyanov and A. I. Vdovin, Phys. Rep. 166, 125 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    V. Van der Sluys, D. Van Neck, M. Waroquier, and J. Ryckebusch, Nucl. Phys. A 551, 210 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    S. Mishev and V. V. Voronov, Phys. Rev. C 78, 024310 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    S. Mishev and V. V. Voronov, Phys. Rev. C 82, 64312 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    S. Mishev and V. V. Voronov, Phys. Rev. C 92, 044329 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    J. Li, J. X. Wei, J. N. Hu, et al., Phys. Rev. C 88, 064307 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    D. J. Rowe, Nuclear Collective Motion (Menthuen, London, 1970).Google Scholar
  12. 12.
    C. Z. Khuong, V. G. Soloviev, and V. V. Voronov, J. Phys. G 7, 151 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    I. N. Borzov, E. E. Saperstein, and S. V. Tolokonnikov, Yad. Fiz. 71, 493 (2008) [Phys. Atom. Nucl. 71, 469 (2008)].Google Scholar
  14. 14.
    A. I. Levon, S. N. Fedotkin, and A. I. Vdovin, Yad. Fiz. 43, 1416 (1986) [Sov. J. Nucl. Phys. 43, 912 (1986)].Google Scholar
  15. 15.
    N. J. Stone, At. DataNucl. Data Tables 90, 75 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    D. T. Yordanov et al., Phys. Rev. Lett. 110, 192501 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    S. Mishev, Phys. Rev. C 87, 064310 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Institute for Advanced Physical StudiesNew Bulgarian UniversitySofiaBulgaria

Personalised recommendations