Skip to main content
Log in

The Skyrme-TQRPA calculations of electron capture on hot nuclei in pre-supernova environment

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

We combine the thermal QRPA approach with the Skyrme energy density functional theory (Skyrme–TQRPA) for modelling the process of electron capture on nuclei in supernova environment. For a sample nucleus, 56Fe, the Skyrme–TQRPA approach is applied to analyze thermal effects on the strength function of GT+ transitions which dominate electron capture at E e ≤ 30 MeV. Several Skyrme interactions are used in order to verify the sensitivity of the obtained results to the Skyrme force parameters. Finite-temperature cross sections are calculated and the results are comparedwith those of the other model calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Langanke and G. Martínez-Pinedo, Rev. Mod. Phys. 75, 819 (2003).

    Article  ADS  Google Scholar 

  2. H.-Th. Janka, K. Langanke, A. Marek, et al., Phys. Rept. 442, 38 (2007).

    Article  ADS  Google Scholar 

  3. E. Caurier, K. Langanke, G. Martínez-Pinedo, and F. Nowacki, Nucl. Phys. A 653, 439 (1999).

    Article  ADS  Google Scholar 

  4. K. Langanke and G. Martínez-Pinedo, Nucl. Phys. A 673, 481 (2000).

    Article  ADS  Google Scholar 

  5. P. B. Radha, D. J. Dean, S. E. Koonin, et al., Phys. Rev. C 56, 3079 (1997).

    Article  ADS  Google Scholar 

  6. G. Wendell Misch, George M. Fuller, and B. Alex Brown, Phys. Rev. C 90, 065808 (2014).

    Article  ADS  Google Scholar 

  7. A. A. Dzhioev, A. I. Vdovin, V. Yu. Ponomarev, and J. Wambach, Yad. Fiz. 72, 1373 (2009) [Phys. At. Nucl. 72, 1320 (2009)].

    Google Scholar 

  8. Alan A. Dzhioev, A. I. Vdovin, V. Yu. Ponomarev, et al., Phys. Rev. C 81, 015804 (2010).

    Article  ADS  Google Scholar 

  9. J. Cooperstein and J. Wambach, Nucl. Phys. A 420, 591 (1984).

    Article  ADS  Google Scholar 

  10. Alan A. Dzhioev, A. I. Vdovin, J. Wambach, and V. Yu. Ponomarev, Phys. Rev. C 89, 035805 (2014).

    Article  ADS  Google Scholar 

  11. Alan A. Dzhioev, A. I. Vdovin, and J. Wambach, Phys. Rev. C 92, 045804 (2015).

    Article  ADS  Google Scholar 

  12. V. G. Soloviev, Theory of Atomic Nuclei: Quasiparticles and Phonons (Taylor and Francis, 1992).

    Google Scholar 

  13. Nguyen Van Giai, Ch. Stoyanov, and V. V. Voronov, Phys. Rev. C 57, 1204 (1998).

    Article  ADS  Google Scholar 

  14. A. P. Severyukhin, Ch. Stoyanov, V. V. Voronov, and Nguyen Van Giai, Phys. Rev. C 66, 034304 (2002).

    Article  ADS  Google Scholar 

  15. A. P. Severyukhin, V. V. Voronov, and Nguyen Van Giai, Prog. Theor. Phys. 128, 489 (2012).

    Article  ADS  Google Scholar 

  16. N. Paar, G. Colò, E. Khan, and D. Vretenar, Phys. Rev. C 80, 055801 (2009).

    Article  ADS  Google Scholar 

  17. A. F. Fantina, E. Khan, G. Colò, et al., Phys. Rev. C 86, 035805 (2012).

    Article  ADS  Google Scholar 

  18. Y. F. Niu, N. Paar, D. Vretenar, and J. Meng, Phys. Rev. C 83, 045807 (2011).

    Article  ADS  Google Scholar 

  19. J. Wambach, in Weak and Electromagnetic Interactions in Nuclei, Ed. by H. V. Klapdor (Springer, Heidelberg, 1986), p. 950.

  20. H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo Field Dynamics and Condensed States (North-Holland, Amsterdam, 1982).

    Google Scholar 

  21. Y. Takahashi and H. Umezawa, Int. J. Mod. Phys. B 10, 1755 (1996).

    Article  ADS  Google Scholar 

  22. I. Ojima, Ann. Phys. (N.Y.) 137, 1 (1981).

    Article  ADS  Google Scholar 

  23. Alan A. Dzhioev and A. I. Vdovin, Int. J. Mod. Phys. E 18, 1535 (2009).

    Article  ADS  Google Scholar 

  24. P. F. Bortignon, A. Bracco, and R. A. Broglia, Giant Resonances. Nuclear Structure at Finite Temperature (Contemporary Concepts in Physics, Vol. 10) (Harwood Acad. Publ., 1998).

    Google Scholar 

  25. G. F. Bertsch and S. F. Tsai, Phys. Rept. 18, 125 (1975).

    Article  ADS  Google Scholar 

  26. Nguyen Van Giai and H. Sagawa, Phys. Lett. B 106, 379 (1981).

    Article  ADS  Google Scholar 

  27. A. L. Goodman, Nucl. Phys. A 352, 30 (1981).

    Article  ADS  Google Scholar 

  28. O. Civitarese, G. Dussel, and R. P. J. Perazzo, Nucl. Phys. A 404, 15 (1983).

    Article  ADS  Google Scholar 

  29. E. Chabanat, P. Bonche, P. Haensel, et al., Nucl. Phys. A 635, 231 (1998).

    Article  ADS  Google Scholar 

  30. J. Bartel, P. Quentin, M. Brack, et al., Nucl. Phys. A 386, 79 (1982).

    Article  ADS  Google Scholar 

  31. S. El-Kateb, K. P. Jackson, W. P. Alford, et al., Phys. Rev. C 49, 3128 (1994).

    Article  ADS  Google Scholar 

  32. V. A. Kuzmin and V. G. Soloviev, J. Phys. G 10, 1507 (1984).

    Article  ADS  Google Scholar 

  33. A. P. Severyukhin, V. V. Voronov, I. N. Borzov, and Nguyen Van Giai, Roma. J. Phys. 58, 1048 (2013).

    Google Scholar 

  34. P. Sarriguren, Phys. Rev. C 87, 045801 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan A. Dzhioev.

Additional information

To the blessed memory of V.G. Soloviev

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhioev, A.A., Vdovin, A.I. & Stoyanov, C. The Skyrme-TQRPA calculations of electron capture on hot nuclei in pre-supernova environment. Phys. Atom. Nuclei 79, 1019–1029 (2016). https://doi.org/10.1134/S1063778816060077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778816060077

Navigation