Spin and mass of the supermassive black hole in the Galactic Center


A new method for exact determination of the masses and spins of black holes from the observations of quasi-periodic oscillations is discussed. The detected signal from the hot clumps in the accretion plasma must contain modulations with two characteristic frequencies: the frequency of rotation of the black hole event horizon and the frequency of the latitudinal precession of the clump’s orbit. Application of the method of two characteristic frequencies for interpretation of the observed quasi-periodic oscillations from the supermassive black hole in the Galactic center in the X-rays and in the near IR region yields the most exact, for the present, values of the mass and the spin (Kerr parameter) of the Sgr A* black hole: M = (4.2 ± 0.2) × 106 M and a = 0.65 ± 0.05. The observed quasi-periodic oscillations with a period of about 11.5 min are identified as the black hole event horizon rotation period and those with a period of about 19 min are identified as the latitudinal oscillation period of the hot spot orbits in the accretion disk.

This is a preview of subscription content, access via your institution.


  1. 1.

    S. Gillessen et al., Astrophys. J. 692, 1075 (2009).

    Article  ADS  Google Scholar 

  2. 2.

    L. Meyer et al., Science 338, 84 (2012).

    Article  ADS  Google Scholar 

  3. 3.

    B. Aschenbach, N. Grosso, N. Porquet, and P. Predehl, Astron. Astrophys. 417, 71 (2004).

    Article  ADS  Google Scholar 

  4. 4.

    R. Genzel et al., Nature 425, 934 (2003).

    Article  ADS  Google Scholar 

  5. 5.

    R. A. Syunyaev, Sov. Astron. 16, 941 (1973).

    ADS  Google Scholar 

  6. 6.

    M. A. Abramowicz, A. Lanza, E. A. Spiegel, and E. Szuszkiewicz, Nature 356, 41 (1992).

    Article  ADS  Google Scholar 

  7. 7.

    A. F. Zakharov, Mon. Not. R. Astron. Soc. 269, 283 (1994).

    Article  ADS  Google Scholar 

  8. 8.

    A. E. Broderick and A. Loeb, Mon. Not. R. Astron. Soc. 367, 905 (2006).

    Article  ADS  Google Scholar 

  9. 9.

    J.-M. Wang, C. Cheng, and Y.-R. Li, Astrophys. J. 748, 147 (2012).

    Article  ADS  Google Scholar 

  10. 10.

    C. S. Reynolds and P. Armitage, Mon. Not. R. Astron. Soc. 341, 1041 (2003).

    Article  ADS  Google Scholar 

  11. 11.

    B. Carter, Phys. Rev. 174, 1559 (1968).

    Article  ADS  MATH  Google Scholar 

  12. 12.

    J. M. Bardeen, W. H. Press, and S. A. Teukiolsky, Astrophys. J. 178, 347 (1972).

    Article  ADS  Google Scholar 

  13. 13.

    C. W. Misner et al., Phys. Rev. Lett. 28, 998 (1972).

    Article  ADS  Google Scholar 

  14. 14.

    C. T. Cunningham and J. M. Bardeen, Astrophys. J. 173, L137 (1972).

    Article  ADS  Google Scholar 

  15. 15.

    A. G. Polnarev, Astrophysics 8, 273 (1972).

    Article  ADS  Google Scholar 

  16. 16.

    D. C. Wilkins, Phys. Rev. D: Part. Fields 5, 814 (1972).

    Article  ADS  Google Scholar 

  17. 17.

    A. Merloni, M. Vietri, M. Stella, and M. Bini, Mon. Not. R. Astron. Soc. 304, 155 (1999).

    Article  ADS  Google Scholar 

  18. 18.

    V. I. Dokuchaev, Class. Quantum Grav. 28, 235015 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  19. 19.

    V. I. Dokuchaev, Grav. Cosmol. 18, 65 (2012).

    Article  ADS  MATH  Google Scholar 

  20. 20.

    V. I. Dokuchaev, Gen. Relat. Grav. 46, 1832 (2014).

    Article  ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. I. Dokuchaev.

Additional information

Original Russian Text © V.I. Dokuchaev, 2014, published in Yadernaya Fizika i Inzhiniring, 2014, Vol. 5, Nos. 9–10, pp. 806–809.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dokuchaev, V.I. Spin and mass of the supermassive black hole in the Galactic Center. Phys. Atom. Nuclei 78, 1517–1519 (2015). https://doi.org/10.1134/S1063778815130074

Download citation


  • Galactic Center
  • black holes