Skip to main content
Log in

Influence of molecular clustering on the interpretation of diffractograms of hydrocarbon films from tokamak T-10

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The influence of molecular clustering on the formerly suggested interpretation of diffraction patterns of hydrocarbon films formed in the vacuum vessel of the tokamak T-10 is analyzed numerically. The simulation of clustering of simple hydrocarbon molecules C(D, H)4, C2(D, H)4, and C6(D, H)6 and molecules composed of curved graphene (fullerenes and toroidal nanotubes) is carried out with the rigid body molecular dynamics method. It is shown that formerly neglected atomic correlations C–C and C–D(H) in the amorphous hydrocarbon component decrease the calculated values of the scattered intensity in the range of scattering vector modulus 5 < q < 20 nm–1 because of homogenization of scatters on the spatial scale of ~1 nm. The allowance for these correlations does not change the diffraction patterns in the range q > 20 nm–1. The results suggest the necessity to introduce to the procedure of determining the structural content of the films, similar to those from the tokamak T-10, the clusters formed by the van der Waals adhesion of hydrocarbon molecules to “graphene” nanoparticles. This simplifies the mathematical optimization to the former level of complexity—but for an extended ensemble of objects—and makes it possible to calculate the diffraction patterns of these objects using the distributed computing resources. A modified algorithm of structural content identification on the basis of joint X-ray and neutron diffractometry is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Kukushkin, V. S. Neverov, N. L. Marusov, I. B. Semenov, B. N. Kolbasov, V. V. Voloshinov, A. P. Afanasiev, A. S. Tarasov, V. G. Stankevich, N. Yu. Svechnikov, A. A. Veligzhanin, Ya. V. Zubavichus, and L. A. Chernozatonskii, Chem. Phys. Lett. 506, 265 (2011).

    Article  ADS  Google Scholar 

  2. V. S. Neverov, A. B. Kukushkin, N. L. Marusov, I. B. Semenov, V. V. Voloshinov, A. P. Afanasiev, A. S. Tarasov, A. A. Veligzhanin, Ya. V. Zubavichus, N. Yu. Svechnikov, and V. G. Stankevich, Problems At. Sci. & Technol., Ser. Thermonucl. Fusion, No. 1, 7 (2010).

    Google Scholar 

  3. V. S. Neverov, A. B. Kukushkin, N. L. Marusov, I. B. Semenov, V. V. Voloshinov, A. P. Afanasiev, A. S. Tarasov, A. A. Veligzhanin, Ya. V. Zubavichus, N. Yu. Svechnikov, and V. G. Stankevich, Problems At. Sci. & Technol., Ser. Thermonucl. Fusion, No. 1, 13 (2011).

    Google Scholar 

  4. L. A. Chernozatonskii, V. S. Neverov, and A. B. Kukushkin, Phys. B: Condens. Matter 407, 3467 (2012).

    Article  ADS  Google Scholar 

  5. V. V. Voloshinov and V. S. Neverov, Inform. Tekhnol. Vychisl. Sist. 4, 10 (2011).

    Google Scholar 

  6. V. S. Neverov, Sovrem. Probl. Nauki Obrazov. 6, 3 (2013). http://onlineraeru/1349

    Google Scholar 

  7. V. S. Neverov, V. V. Voloshinov, A. B. Kukushkin, and A. S. Tarasov, arXiv:1301.3418 [physicscomp-ph] (2013). http://arxivorg/abs/1301.3418

    Google Scholar 

  8. V. I. Krauz, Yu. V. Martynenko, N. Yu. Svechnikov, V. P. Smirnov, V. G. Stankevich, and L. N. Khimchenko, Phys. Usp. 180, 1015 (2010).

    Google Scholar 

  9. V. G. Stankevich, N. Yu. Svechnikov, Ya. V. Zubavichus, A. A. Veligzhanin, et al., Problems At. Sci. & Technol., Ser. Thermonucl. Fusion, No. 1, 3 (2011).

    Google Scholar 

  10. A. Ya. Kislov, A. A. Skovoroda, and A. V. Spitsyn, Problems At. Sci. & Technol., Ser. Thermonucl. Fusion, No. 2, 19 (2010).

    Google Scholar 

  11. B. N. Kolbasov, V. G. Stankevich, N. Yu. Svechnikov, V. S. Neverov, A. B. Kukushkin, Y. V. Zubavichus, A. A. Veligzhanin, L. P. Sukhanov, K. A. Menshikov, A. M. Lebedev, D. Rajarathnam, and L. N. Khimchenko, J. Nucl. Mater. 415, S266 (2011).

    Article  ADS  Google Scholar 

  12. L. A. Chernozatonskii, Phys. Lett. A 170, 37 (1992).

    Article  ADS  Google Scholar 

  13. E. G. Galpern, I. V. Stankevich, A. L. Chistyakov, and L. A. Chernozatonskii, Fullerenes, Nanotubes, Carbon Nanostruct. 2, 1 (1994).

    Google Scholar 

  14. G. Ciccotti and J. P. Ryckaert, Comput. Phys. Rep. 4, 346 (1986).

    Article  ADS  Google Scholar 

  15. D. C. Rapaport, J. Comp. Phys. 60, 306 (1985).

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Neverov.

Additional information

Original Russian Text © V.S. Neverov, V.V. Voloshinov, A.B. Kukushkin, A.S. Tarasov, 2014, published in Voprosy Atomnoi Nauki i Tekhniki. Seriya: Termoyadernyi Sintez, 2014, Vol. 37, No. 1, pp. 62–69.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neverov, V.S., Voloshinov, V.V., Kukushkin, A.B. et al. Influence of molecular clustering on the interpretation of diffractograms of hydrocarbon films from tokamak T-10. Phys. Atom. Nuclei 78, 1112–1119 (2015). https://doi.org/10.1134/S1063778815100075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778815100075

Keywords

Navigation