Skip to main content
Log in

The nonsinglet structure function evolution by Laplace method

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

We derive a general scheme for the evolution of the nonsinglet structure function at the leadingorder (LO) and next-to-leading-order (NLO) by using the Laplace-transform technique. Results for the nonsinglet structure function are compared with MSTW2008, GRV, and CKMT parameterizations and also EMC experimental data in the LO and NLO analysis. The results are in good agreement with the experimental data and other parameterizations in the low- and large-x regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Griffith, Introduction to Elementary Particles (Wiley, New York, 1987).

    Book  Google Scholar 

  2. F. Halzen and A. D. Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics (Wiley, New York, 1990).

    Google Scholar 

  3. G. Wolf, First Results from HERA (DESY, 1992).

  4. B. Foster, Int. J.Mod. Phys. A 13, 1543 (1998).

    Article  ADS  Google Scholar 

  5. Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  6. G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  7. V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972).

    Google Scholar 

  8. N. Cabibbo and R. Petronzio, Nucl. Phys. B 137, 395 (1978).

    Article  ADS  Google Scholar 

  9. M. Miyama and S. Kumano, Comput. Phys. Commun. 94, 185 (1996)

    Article  ADS  Google Scholar 

  10. M. Hirai, S. Kumano, and M. Miyama, Comput. Phys. Commun. 108, 38 (1998).

    Article  ADS  MATH  Google Scholar 

  11. R. Toldrá, Comput. Phys. Commun. 143, 287 (2002).

    Article  ADS  MATH  Google Scholar 

  12. W. Furmanski and R. Petronzio, Nucl. Phys. B 195, 237 (1982)

    Article  ADS  Google Scholar 

  13. G. P. Ramsey, J. Comput. Phys. 60, 97 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. J. Blümlein, G. Ingelman, M. Klein, and R. Rückl, Z. Phys. C 45, 501 (1990)

    Article  Google Scholar 

  15. S. Kumano and J. T. Londergan, Comput. Phys. Commun. 69, 373 (1992)

    Article  ADS  Google Scholar 

  16. R. Kobayashi, M. Konuma, and S. Kumano, Comput. Phys. Commun. 86, 264 (1995).

    Article  ADS  MATH  Google Scholar 

  17. M. Glück, E. Reya, and A. Vogt, Z. Phys. C 48, 471 (1990)

    Article  Google Scholar 

  18. D. Graudenz, M. Hampel, A. Vogt, and C. Berger, Z. Phys. C 70, 77 (1996)

    Google Scholar 

  19. J. Blümlein and A. Vogt, Phys. Rev. D 58, 014020 (1998)

    Article  ADS  Google Scholar 

  20. J. Blümlein, Comput. Phys. Commun. 133, 76 (2000)

    Article  ADS  MATH  Google Scholar 

  21. M. Stratmann and W. Vogelsang, Phys. Rev. D 64, 114007 (2001).

    Article  ADS  Google Scholar 

  22. S. Kumano and T.-H. Nagai, J. Comput. Phys. 201, 651 (2004).

    Article  ADS  MATH  Google Scholar 

  23. J. Kwiecinski, A. D. Martin, W. J. Stirling, and R. G. Roberts, Phys. Rev. D 42, 3645 (1990).

    Article  ADS  Google Scholar 

  24. A. Donnachie and P. V. Landshoff, Nucl. Phys. B 244, 322 (1984).

    Article  ADS  Google Scholar 

  25. E. Eichten, Z. Hinchliffe, K. Lane, and C. Quigg, Rev. Mod. Phys. 56, 579 (1984).

    Article  ADS  Google Scholar 

  26. A. Milsztajn et al., Z. Phys. C 49, 527 (1991).

    Article  Google Scholar 

  27. Ya. Ya. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978)

    Google Scholar 

  28. L. N. Lipatov, Sov. Phys. JETP 63, 904 (1986).

    Google Scholar 

  29. L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep. 100, 1 (1983).

    Article  ADS  Google Scholar 

  30. E. M. Levin and M. G. Ryskin, Phys. Rep. 189, 267 (1990).

    Article  ADS  Google Scholar 

  31. I. Sneddon, Elements of Partial Differential Equations (McGraw-Hill, New York, 1957).

    MATH  Google Scholar 

  32. W. E. Williams, Partial Differential Equations (Clarendon, Oxford, 1980).

    MATH  Google Scholar 

  33. E. C. Zachmanoglou and D. W. Thoe, Introduction to Partial Differential Equations with Applications (Williams and Wilkins, Baltimore, 1976)

    MATH  Google Scholar 

  34. L. F. Abbot, W. B. Atwood, and R. M. Barnett, Phys. Rev. D 22, 582 (1980).

    Article  ADS  Google Scholar 

  35. R. Baishya and J. K. Sarma, Phys. Rev. D 74, 107702 (2006).

    Article  ADS  Google Scholar 

  36. B. I. Ermolaev, S. I. Manayenkov, and M. G. Ryskin, Z. Phys. C 69, 259 (1995/1996).

    Article  Google Scholar 

  37. N. N. K. Borah, D. K. Choudhury, and P. K. Sahariah, J. Phys.: Conf. Ser. 481, 012023 (2014).

    ADS  Google Scholar 

  38. J. J. Aubert et al., Nucl. Phys. B 293, 740 (1987).

    Article  ADS  Google Scholar 

  39. A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, arXiv: 0901.0002v3 [hep-ph].

  40. M. Glück, E. Reya, and A. Vogt, Z. Phys. C 67, 433 (1995).

    Article  ADS  Google Scholar 

  41. A. Capella, A. B.Kaidalov, C. Merino, and J. T. T. Van, Phys. Lett. B 337, 358 (1994)

    Article  ADS  Google Scholar 

  42. A. B. Kaidalov, C. Merino, and D. Pertermann, Eur. Phys. J. C 20, 301 (2001).

    Article  ADS  Google Scholar 

  43. W. A. Bardeen et al., Phys. Rev. D 18, 3998 (1978).

    Article  ADS  Google Scholar 

  44. M. M. Block, L. Durand, and D. W. McKay, Phys. Rev. D 77, 094003 (2008)

    Article  ADS  Google Scholar 

  45. M. M. Block, L. Durand, and D. W. McKay, Phys. Rev. D 79, 014031 (2009)

    Article  ADS  Google Scholar 

  46. M. M. Block, Eur. Phys. J.m C 65, 1 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  47. A. N. Khorramian, H. Khanpour, and S. A. Tehrani, Phys. Rev. D 81, 014013 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Boroun.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boroun, G.R., Zarrin, S. The nonsinglet structure function evolution by Laplace method. Phys. Atom. Nuclei 78, 1034–1042 (2015). https://doi.org/10.1134/S1063778815090069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778815090069

Keywords

Navigation