Physics of Atomic Nuclei

, Volume 77, Issue 4, pp 537–544 | Cite as

Differential equations in momentum space for the three-body problem in the case of pointlike pair interactions

  • F. M. Pen’kov
  • W. Sandhas
Nuclei Theory


Corrects schemes for solving equations of three-body dynamics for systems governed by a zerorange two-body interaction are considered. Correlations between spectral features of a three-boson system are obtained. The results are compared with the results obtained by calculating the spectra and scattering lengths in the system of three helium atoms with realistic two-body interaction potentials.


Atomic Nucleus Momentum Space Helium Atom Faddeev Equation Hypergeometric Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. V. Skornyakov and K. A. Ter-Martirosyan, Sov. Phys. JETP 4, 648 (1957).Google Scholar
  2. 2.
    R. A. Minlos and L. D. Faddeev, Sov. Phys. Dokl. 6, 1072 (1962).ADSMathSciNetGoogle Scholar
  3. 3.
    G. S. Danilov, Sov. Phys. JETP 13, 349 (1961).zbMATHMathSciNetGoogle Scholar
  4. 4.
    R. A. Minlos and L. D. Faddeev, Sov. Phys. JETP 14, 1315 (1962).MathSciNetGoogle Scholar
  5. 5.
    L. H. Thomas, Phys. Rev. 47, 903 (1935).ADSCrossRefGoogle Scholar
  6. 6.
    D. V. Fedorov, A. S. Jensen, and K. Riisager, Phys. Rev. C 50, 2372 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    V. N. Efimov, Sov. J. Nucl. Phys. 12, 589 (1971).Google Scholar
  8. 8.
    P. F. Bedaque, H. W. Hammer, and U. van Kolck, Phys. Rev. Lett. 82, 463 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    F. M. Penkov, J. Exp. Theor. Phys. 97, 485 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    F. M. Penkov and W. Sandhas, Phys. Rev. A 72, 060702(R) (2005).ADSCrossRefGoogle Scholar
  11. 11.
    F. M. Penkov and V. Zandkhas, Bull. Russ. Acad. Sci.: Phys. 72, 1536 (2008).CrossRefGoogle Scholar
  12. 12.
    F. M. Penkov and V. Zandkhas, Bull. Russ. Acad. Sci.: Phys. 73, 207 (2009).CrossRefGoogle Scholar
  13. 13.
    S. Yu. Slavyanov and W. Lay, Special Functions: A Unified Theory Based on Singularities (Oxford Univ. Press, New York, 2000).Google Scholar
  14. 14.
    V. A. Roudnev, S. L. Yakovlev, and S. A. Sofianos, Few-Body Syst. 37, 179 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    A. K. Motovilov, W. Sandhas, S. A. Sofianos, and E. A. Kolganova, Eur. Phys. J. D 13, 33 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    V. Roudnev, Chem. Phys. Lett. 367, 95 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of Nuclear PhysicsAlmatyRepublic of Kazakhstan
  2. 2.Physikalisches Institut der Universität BonnBonnFederal Republic of Germany

Personalised recommendations