Skip to main content
Log in

Structure and dynamics of few-helium clusters using soft-core potentials

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

In this work we investigate the structure and dynamics of small clusters of Helium atoms. We consider bound states of clusters having A = 2, 3, 4, 5, 6 atoms and continuum states in the three-atom system. Motivated by the fact that the He-He system has a very large scattering length a compared to the range r 0 of the He-He potential (r 0/a < 1/10), we propose the use of a soft-core interparticle potential. We use an attractive gaussian potential that reproduces the values of the dimer binding energy and the atomatom scattering length obtained with one of the widely used He-He interactions, the LM2M2 potential. In addition, we include a repulsive three-body force to reproduce the trimer binding energy. With this model, consisting in the sum of a two- and a three-body potential, we show the spectrum of the four, five, and sixparticle systems and phase-shifts and inelasticities in the three-atom system. Comparisons to calculations using realistic He-He potentials are given. In addition some universal relations are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Braaten and H.-W. Hammer, Phys. Rep. 428, 259 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  2. F. Ferlaino and R. Grimm, Physics 3, 9 (2010).

    Article  Google Scholar 

  3. V. Efimov, Phys. Lett. B 33, 563 (1970).

    Article  ADS  Google Scholar 

  4. V. Efimov, Sov. J. Nucl. Phys. 12, 589 (1971).

    Google Scholar 

  5. E. A. Kolganova, A. K. Motovilov, and S. A. Sofianos, J. Phys. B 31, 1279 (1998).

    Article  ADS  Google Scholar 

  6. E. Nielsen, D. V. Fedorov, A. S. Jensen, and E. Garrido, Phys. Rep. 347, 373 (2001).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. E. Hiyama and M. Kamimura, Phys. Rev. A 85, 022502 (2012).

    Article  ADS  Google Scholar 

  8. M. Lewerenz, J. Chem. Phys. 106, 4596 (1997).

    Article  ADS  Google Scholar 

  9. P. Barletta and A. Kievsky, Phys. Rev. A 64, 042514 (2001).

    Article  ADS  Google Scholar 

  10. J. von Stecher and Ch. H. Greene, Phys. Rev. A 80, 022504 (2009).

    Article  ADS  Google Scholar 

  11. N. K. Timofeyuk, Phys. Rev. C 78, 054314 (2008).

    Article  ADS  Google Scholar 

  12. M. Gattobigio, A. Kievsky, and M. Viviani, Phys. Rev. A 86, 042513 (2012).

    Article  ADS  Google Scholar 

  13. A. Kievsky, E. Garrido, C. Romero-Redondo, and P. Barletta, Few-Body Syst. 51, 259 (2011).

    Article  ADS  Google Scholar 

  14. M. Gattobigio, A. Kievsky, and M. Viviani, Phys. Rev. A 84, 052503 (2011).

    Article  ADS  Google Scholar 

  15. R. A. Aziz and M. J. Slaman, J. Chem. Phys. 94, 8047 (1991).

    Article  ADS  Google Scholar 

  16. P. Barletta, C. Romero-Redondo, A. Kievsky, M. Viviani, and E. Garrido, Phys. Rev. Lett. 103, 090402 (2009).

    Article  ADS  Google Scholar 

  17. A. Kievsky et al., Phys. Rev. C 81, 034002 (2010).

    Article  ADS  Google Scholar 

  18. M. Gattobigio, A. Kievsky, and M. Viviani, Phys. Rev. C 83, 024001 (2011).

    Article  ADS  Google Scholar 

  19. E. Nielsen, D. V. Fedorov, and A. S. Jensen, J. Phys. B 31, 4085 (1998).

    Article  ADS  Google Scholar 

  20. C. Romero-Redondo et al., Phys. Rev. A 83, 022705 (2011).

    Article  ADS  Google Scholar 

  21. E. A. Kolganova, A. K. Motovilov, and W. Sandhas, Phys. Part. Nucl. 40, 206 (2009).

    Article  Google Scholar 

  22. E. Garrido, C. Romero-Redondo, A. Kievsky, and M. Viviani, Phys. Rev. A 86, 052709 (2012).

    Article  ADS  Google Scholar 

  23. H. Suno and B. D. Esry, Phys. Rev. A 78, 062701 (2008).

    Article  ADS  Google Scholar 

  24. V. Roudnev, Chem. Phys. Lett. 367, 95 (2003).

    Article  ADS  Google Scholar 

  25. A. K. Motovilov et al., Eur. Phys. J. D 13, 33 (2001).

    Article  ADS  Google Scholar 

  26. B. D. Esry, C. H. Greene, and H. Suno, Phys. Rev. A 65, 010705 (2001).

    Article  Google Scholar 

  27. M. T. Yamashita et al., Phys. Rev. A 68, 033406 (2003).

    Article  ADS  Google Scholar 

  28. T. Frederico et al., Few-Body Syst. 51, 87 (2011).

    Article  ADS  Google Scholar 

  29. M. Gattobigio, A. Kievsky, and M. Viviani, Phys. Rev. A 79, 032513 (2009).

    Article  ADS  Google Scholar 

  30. D. Blume, Ch.H. Greene, and B. D. Esry, J. Chem. Phys. 113, 2145 (2000).

    Article  ADS  Google Scholar 

  31. A. Deltuva, Phys. Rev. A 82, 040701(R) (2010).

    Article  ADS  Google Scholar 

  32. J. von Stecher, J. Phys. B 43, 101002 (2010).

    Article  ADS  Google Scholar 

  33. M. R. Hadizadeh et al., Phys. Rev. Lett. 107, 135304 (2011).

    Article  ADS  Google Scholar 

  34. M. R. Hadizadeh et al., Phys. Rev. A 85, 023610 (2012).

    Article  ADS  Google Scholar 

  35. L. Platter, H.-W. Hammer, and Ulf-G. Meißner, Phys. Rev. A 70, 052101 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kievsky, A., Viviani, M., Gattobigio, M. et al. Structure and dynamics of few-helium clusters using soft-core potentials. Phys. Atom. Nuclei 77, 463–471 (2014). https://doi.org/10.1134/S1063778814040024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778814040024

Keywords

Navigation