Skip to main content
Log in

Interaction of waves with a birefringent medium moving with acceleration

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Recent experiments demonstrated that the energy of a neutron traversing an accelerated sample of a refractive medium changes. Later, it was realized that such an accelerated-medium effect (AME) is quite a general phenomenon characteristic of waves and particles of different nature. This paper discusses some special features of the effect for a birefringent medium. In this case, AME shows quite new features. In neutron optics, where birefringence is due to the spin dependence of the refractive index, AME results in a nonstationary state with a precessing spin. In the case of the propagation of a two-flavor neutrino through an accelerated layer of matter, AME affects substantially the ensuing evolution of a neutrino flavor state as it propagates through a free space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. L. Andersion, Comment to the Papers Nos. 217 and 220 (in E. Fermi, NoteeMemorie, Collected Papers (United States, 1939–1954), Vol. 2) (Accademia Nazionale dei Lincei, Roma; Univ. of Chicago Press, Chicago, London, 1962), p. 425.

    Google Scholar 

  2. L. L. Foldy, Phys. Rev. 67, 107 (1945).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. M. Lax, Rev. Mod. Phys. 23, 287 (1951); Phys. Rev. 85, 621 (1952).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. M. A. Horn and A. Zeilinger, in Neutron Interferometry, Ed. by U. Bonse and H. Rauch (Clarendon, Oxford, 1979), p. 350.

  5. A. G. Klein et al., Phys. Rev. Lett. 46, 1551 (1981).

    Article  ADS  Google Scholar 

  6. M. Arif, H. Kaiser, S. A. Werner, et al., Phys. Rev. A 31, 1203 (1985).

    Article  ADS  Google Scholar 

  7. M. Arif, H. Kaiser, R. Clothier, et al., Phys. Rev. A 39, 931 (1989).

    Article  ADS  Google Scholar 

  8. U. Bonse and A. Rump, Phys. Rev. Lett. 56, 2441 (1986).

    Article  ADS  Google Scholar 

  9. M. A. Horne, A. Zeilinger, A. G. Klein, and G. I. Opat, Phys. Rev. A 28, 1 (1983).

    Article  ADS  Google Scholar 

  10. V. F. Sears, Phys. Rev. A 32, 2524 (1985).

    Article  ADS  Google Scholar 

  11. U. Bonse and A. Rump, Phys. Rev.A 37, 1059 (1988).

    Article  ADS  Google Scholar 

  12. R. J. Neutze, G. E. Stedman, and H.R. Bilger, J. Opt. Soc. Am. B 13, 2065 (1996).

    Article  ADS  Google Scholar 

  13. A. Peres, Am. J. Phys. 51 947 (1983).

    Article  ADS  Google Scholar 

  14. K. Tanaka, Phys. Rev. A 25, 385 (1982).

    Article  ADS  Google Scholar 

  15. R. Neutze and G. E. Stedman, Phys. Rev. A 58, 82 (1998).

    Article  ADS  Google Scholar 

  16. F. V. Kowalski, Phys. Lett. A 182, 335 (1993).

    Article  ADS  Google Scholar 

  17. V. G. Nosov and A. I. Frank, Phys. At. Nucl. 61, 613 (1998).

    Google Scholar 

  18. A. I. Frank, P. Geltenbort, G. V. Kulin, et al., JETP Lett. 84, 363 (2006).

    Article  ADS  Google Scholar 

  19. A. I. Frank, P. Geltenbort, M. Jentshel, et al., Phys. At. Nucl. 71, 1656 (2008).

    Article  Google Scholar 

  20. A. I. Frank, P. Geltenbort, M. Jentshel, et al., JETP Lett. 93, 361 (2011).

    Article  ADS  Google Scholar 

  21. A. I. Frank, P. Geltenbort, M. Jentschel, et al., J. Phys.: Conf. Ser. 340, 012042 (2012).

    ADS  Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Fizmatlit, Moscow, 2004, 6th ed., Pergamon, New York, 1977, 3rd ed.), p. 17.

    Google Scholar 

  23. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Fizmatlit, Moscow, 2005, 4th ed.; Pergamon, New York, 1984), p. 17.

    Google Scholar 

  24. J. Yeh, J. Appl. Phys. 36, 3513 (1965).

    Article  ADS  Google Scholar 

  25. A. M. Kamchatnov, V. G. Nosov, and A. I. Frank, in Neutron Physics, Proceedings of the 1st International Conference on Neutron Physics, Kiev, 1987 (TsNIIatominform, Moscow, 1988), vol. 1, p. 241.

    Google Scholar 

  26. A. V. Kozlov and A. I. Frank, Phys. At. Nucl. 68, 1104 (2005).

    Article  Google Scholar 

  27. G. Badurek, H. Rauch, and J. Summhammer, Physica B 151, 82 (1988).

    Article  Google Scholar 

  28. R. Golub and R. Gähler,, Phys. Lett. A 123, 43 (1987).

    Article  ADS  Google Scholar 

  29. R. Gähler, R. Golub, and T. Keller,, Physica B 180–181, 899 (1992).

    Article  Google Scholar 

  30. W. Besenböck, R. Gähler, P. Hank, et al., J. Neutron Res. 7, 65 (1998).

    Article  Google Scholar 

  31. A. I. Frank and A. V. Kozlov, Physica B 404, 2550 (2009).

    Article  ADS  Google Scholar 

  32. V. G. Baryshevskii, S. V. Cherepitsa, and A. I. Frank, Phys. Lett. A 153, 299 (1991).

    Article  ADS  Google Scholar 

  33. V. G. Baryshevskii and M I. Podgoretskii, Sov. Phys. JETP 20, 704 (1964).

    Google Scholar 

  34. A. Abragam, G. L. Bacchella, H. Glättli, et al., Phys. Rev. Lett. 31, 776 (1973).

    Article  ADS  Google Scholar 

  35. F. C. Michel, Phys. Rev. 133, B329 (1964)

    Article  ADS  Google Scholar 

  36. L. Stodolsky, Phys. Lett. B 50, 352 (1974).

    Article  ADS  Google Scholar 

  37. M. Forte, B. R. Heckel, N. F. Ramsey, et al., Phys. Rev. Lett. 45, 2088 (1980).

    Article  ADS  Google Scholar 

  38. L. Stodolsky, Nucl. Phys. B 197, 213 (1982).

    Article  ADS  Google Scholar 

  39. O. P. Sushkov and V. V. Flambaum, Sov. Phys. Usp. 25, 1 (1982).

    Article  ADS  Google Scholar 

  40. W. M. Snow (for the proto-NNbar Collab.), Nucl. Instrum. Methods Phys. Res. A 611, 144 (2009).

    Article  ADS  Google Scholar 

  41. Neutron Spin Echo, Ed. by F. Mezei (Springer, Heidelberg, 1980).

    Google Scholar 

  42. A. I. Frank, I. V. Bondarenko, A. V. Kozlov, et al., Physica B 297, 307 (2001).

    Article  ADS  Google Scholar 

  43. A. I. Studenikin, Phys. At. Nucl. 67, 993 (2004); J. Phys. A 41, 164047 (2008), arXiv:0804.1417 [hepph].

    Article  Google Scholar 

  44. A. V. Grigor’ev, A. M. Savochkin, and A. I. Studenikin, Russ. Phys. J. 50, 845 (2007); A. I. Studenikin, J. Phys. Conf. Ser. 136, 042026 (2008); M. Dvornikov, arXiv:1001.2516 [hepph]; arXiv:1001.2690 [hep-ph].

    Article  Google Scholar 

  45. V. A. Naumov, Phys. Lett. B 529, 199 (2002), hepph/0112249.

    Article  ADS  Google Scholar 

  46. V. A. Naumov and L. Perrone, Astropart. Phys. 10, 239 (1999), hep-ph/9804301.

    Article  ADS  Google Scholar 

  47. M. Fukugita and T. Yanagida, Physics of Neutrinos and Applications to Astrophysics (Springer, 2003).

    Google Scholar 

  48. A. I. Studenikin and I. V. Tokarev, arXiv:1206.0636 [hep-ph].

  49. L. Wolfenstein, Phys. Rev. D 17, 2369 (1978); S. P. Mikheev and Yu. A. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985); S. P. Mikheev and A. Yu. Smirnov, Nuovo Cimento C 9, 17 (1986).

    Article  ADS  Google Scholar 

  50. B. M. Pontecorvo, Sov. Phys. JETP 6, 429 (1957); Sov. Phys. JETP 7, 172 (1958); V.Gribov and B. Pontecorvo, Phys. Lett. B 28, 493 (1969).

    ADS  Google Scholar 

  51. A. Yu. Smirnov, Phys. Scripta T121, 57 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Frank.

Additional information

Original Russian Text © A.I. Frank, V.A. Naumov, 2013, published in Yadernaya Fizika, 2013, Vol. 76, No. 12, pp. 1507–1518.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, A.I., Naumov, V.A. Interaction of waves with a birefringent medium moving with acceleration. Phys. Atom. Nuclei 76, 1423–1433 (2013). https://doi.org/10.1134/S1063778813120065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778813120065

Keywords

Navigation