Skip to main content
Log in

Effect of the Pauli exclusion principle and the polarization of nuclei on the potential of their interaction for the example of the 16O+16O system

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

On the basis of the energy-density method, the effect of simultaneously taking into account the Pauli exclusion principle and the monopole and quadrupole polarizations of interacting nuclei on their interaction potential is considered for the example of the 16O + 16O system by using the wave function for the two-center shell model. The calculations performed in the adiabatic approximation reveal that the inclusion of the Pauli exclusion principle and the polarization of interacting nuclei, especially their quadrupole polarization, has a substantial effect on the potential of the nucleus-nucleus interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Wildermuth and Y. C. Tang, Unified Theory of the Nucleus (Vieweg, Braunschweig, 1977; Mir, Moscow, 1980).

    Book  Google Scholar 

  2. D. J. Stubeda, Y. Fujiwara, and Y. C. Tang, Phys. Rev. C 26, 2410 (1982).

    Article  ADS  Google Scholar 

  3. H. Kanada, T. Kaneko, and Y. C. Tang, Phys. Rev. C 38, 2013 (1988).

    Article  ADS  Google Scholar 

  4. H. Kanada, T. Kaneko, and Y. C. Tang, Nucl. Phys. A 380, 87 (1982).

    Article  ADS  Google Scholar 

  5. H. Kanada, T. Kaneko, and Y. C. Tang, Nucl. Phys. A 389, 285 (1982).

    Article  ADS  Google Scholar 

  6. H. Kanada, T. Kaneko, M. Nomoto, and Y. C. Tang, Prog. Theor. Phys. 72, 369 (1984).

    Article  ADS  Google Scholar 

  7. H. Kanada, T. Kaneko, P. N. Shen, and Y. C. Tang, Nucl. Phys. A 457, 93 (1986).

    Article  ADS  Google Scholar 

  8. T. Kajino, T. Matsuse, and A. Arima, Nucl. Phys. A 414, 185 (1984).

    Article  Google Scholar 

  9. G. F. Filippov, V. S. Vasilevsky, and A. V. Nesterov, Sov. J. Nucl. Phys. 40, 901 (1984).

    Google Scholar 

  10. G. F. Filippov, V. S. Vasilevsky, and A. V. Nesterov, Bull. Acad. Sci. USSR, Phys. Ser. 48, 91 (1984).

    Google Scholar 

  11. G. F. Filippov, V. S. Vasilevsky, and L. L. Chapovskii, Sov. J. Part. Nucl. 16, 153 (1985).

    Google Scholar 

  12. G. F. Filippov, V. S. Vasilevskiı, M. Bruno et al., Sov. J. Nucl. Phys. 51, 978 (1990).

    Google Scholar 

  13. G. F. Filippov, V. S. Vasilevsky, and A. V. Nesterov, Nucl. Phys. A 426, 327 (1984).

    Article  ADS  Google Scholar 

  14. G. F. Filippov, V. S. Vasilevskiı, S. P. Kruchinin, and L. L. Chopovskiı, Sov. J. Nucl. Phys. 43, 536 (1986).

    Google Scholar 

  15. E. Deumens, Nucl. Phys. A 423, 52 (1984).

    Article  ADS  Google Scholar 

  16. A. Sytcheva, F. Arickx, J. Broeckhove, and V. S. Vasilevsky, Phys. Rev. C 71, 044322 (2005).

    Article  ADS  Google Scholar 

  17. A. Sytcheva, J. Broeckhove, F. Arickx, and V. S. Vasilevsky, J. Phys. G 32, 2137 (2006).

    Article  ADS  Google Scholar 

  18. P. E. Hodgson, Nuclear Heavy-Ion Reactions (Clarendon, Oxford, 1978).

    Google Scholar 

  19. G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979).

    Article  ADS  Google Scholar 

  20. R. Bass, Nuclear Reactions with Heavy Ions (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  21. G. R. Satchler, Direct Nuclear Reactions (Clarendon, Oxford, 1983).

    Google Scholar 

  22. P. Frobrich and R. Lipperheide, Theory of Nuclear Reactions (Clarendon, Oxford, 1996).

    Google Scholar 

  23. J. Blocki, J. Randrup, W. J. Swiatecki, et al., Ann. Phys. 105, 427 (1977).

    Article  ADS  Google Scholar 

  24. W. D. Myers and W. J. Swiatecki, Phys. Rev. C 62, 044610 (2000).

    Article  ADS  Google Scholar 

  25. H. J. Krappe, J. R. Nix, and A. J. Sierk, Phys. Rev.C 20, 992 (1979).

    Article  ADS  Google Scholar 

  26. A. Winther, Nucl. Phys. A 594, 203 (1995).

    Article  ADS  Google Scholar 

  27. V. Yu. Denisov, Phys. Lett. B 526, 315 (2002).

    Article  ADS  Google Scholar 

  28. V. Yu. Denisov and W. Nörenberg, Eur. Phys. J. A 15, 375 (2002).

    Article  ADS  Google Scholar 

  29. V. I. Kukulin, V. G. Neudachin, and Yu. F. Smipnov, Sov. J. Part. Nucl. 10, 492 (1979).

    Google Scholar 

  30. D. T. Kkhoa and O. M. Knyaz’kov, Sov. J. Part. Nucl. 21, 623 (1990).

    Google Scholar 

  31. T. Fliessbach, Z. Phys. 247, 117 (1971).

    Article  ADS  Google Scholar 

  32. V. B. Soubbotin et al., Phys. Rev. C 64, 014601 (2001).

    Article  ADS  Google Scholar 

  33. D. Brink and F. Stancu, Nucl. Phys. A 243, 175 (1975).

    Article  ADS  Google Scholar 

  34. K. A. Brueckner, J. R. Buchler, and M.M. Kelly, Phys. Rev. 173, 944 (1968).

    Article  ADS  Google Scholar 

  35. C. Ngo, B. Tavain, and J. Galin, Nucl. Phys. A 240, 353 (1975).

    Article  ADS  Google Scholar 

  36. H. Ngo and C. Ngo, Nucl. Phys. A 348, 140 (1980).

    Article  ADS  Google Scholar 

  37. D. T. Khoa, W. von Oertzen, and H. G. Bohlen, Phys. Rev. C 49, 1652 (1994).

    Article  ADS  Google Scholar 

  38. D. T. Khoa and W. von Oertzen, Phys. Lett. B 304, 8 (1993).

    Article  ADS  Google Scholar 

  39. V. Yu. Denisov and V. A. Nesterov, Phys.At.Nucl. 69, 1472 (2006).

    Article  Google Scholar 

  40. D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).

    Article  ADS  Google Scholar 

  41. B. I. Barts, Yu. L. Bolotin, V. Yu. Gonchar, and N. A. Chekanov, Sov. J. Nucl. Phys. 34, 498 (1981).

    Google Scholar 

  42. N. N. Bogolyubov, V. V. Tolmachev, and D. V. Shirkov, A New Method in the Theory of Superconductivity (Consultants Bureau, New York, 1959; Nauka, Moscow, 1958).

    MATH  Google Scholar 

  43. R. Brockman, Phys. Rev. C 18, 1510 (1978).

    Article  ADS  Google Scholar 

  44. D. Brink and E. Boeker, Nucl. Phys. A 91, 1 (1967).

    Article  ADS  Google Scholar 

  45. M. Brack and R. K. Bhaduri, Semiclassical Physics (Addison-Wesley, Boston, 1997).

    Google Scholar 

  46. V. M. Kolomiets, Local-Density Approximation in Atomic and Nuclear Physics (Nauk. Dumka, Kiev, 1990) [in Russian].

    Google Scholar 

  47. M. Brack, C. Guet, and H.-B. Håkansson, Phys. Rep. 123, 275 (1985).

    Article  ADS  Google Scholar 

  48. R. K. Gupta and W. Greiner, Heavy Elements and Related New Phenomena (World Scientific, Singapore, 1999).

    Google Scholar 

  49. M. Mirea, Phys. Rev. C 83, 054608 (2011).

    Article  ADS  Google Scholar 

  50. R. Gupta and S. S. Malik, Eur. Phys. J. A 45, 239 (2010).

    Article  ADS  Google Scholar 

  51. S. S. Malik, Nucl. Phys. A 813, 262 (2008).

    Article  ADS  Google Scholar 

  52. P.-O. Löwdin, Phys. Rev. 97, 1474 (1955).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. T. H. R. Skyrme, Nucl. Phys. 9, 615 (1959).

    MATH  Google Scholar 

  54. V. Yu. Denisov and V. A. Nesterov, Phys. At. Nucl. 73, 1142 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Nesterov.

Additional information

Original Russian Text © V.A. Nesterov, 2013, published in Yadernaya Fizika, 2013, Vol. 76, No. 5, pp. 619–627.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesterov, V.A. Effect of the Pauli exclusion principle and the polarization of nuclei on the potential of their interaction for the example of the 16O+16O system. Phys. Atom. Nuclei 76, 577–584 (2013). https://doi.org/10.1134/S106377881304008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377881304008X

Keywords

Navigation