Skip to main content
Log in

The influence of pairing correlations on the isospin symmetry breaking corrections of superallowed Fermi beta decays

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Within the framework of quasi-particle random phase approximation, the isospin breaking correction of superallowed 0+ → 0+ beta decay and unitarity of Cabibbo-Kobayashi-Maskawa mixing matrix have been investigated. The broken isotopic symmetry of nuclear part of Hamiltonian has been restored by Pyatov’s method. The isospin symmetry breaking correction with pairing correlations has been compared with the previous results without pairing. The effect of pairing interactions has been examined for nine superallowed Fermi beta decays; their parent nuclei are 26Al, 34Cl, 38K, 42Sc, 46V, 50Mn, 54Co, 62Ga, 74Rb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).

    Article  ADS  Google Scholar 

  2. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

    Article  ADS  Google Scholar 

  3. J. C. Hardy and I. S. Towner, Phys. Rev. C 71, 055501 (2005).

    Article  ADS  Google Scholar 

  4. H. Sagawa, N. Van Giai, and T. Suzuki, Phys. Rev. C 53, 2163 (1996).

    Article  ADS  Google Scholar 

  5. A. Sirlin, Rev. Mod. Phys. 50, 573 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  6. W. J. Marciano and A. Sirlin, Phys. Rev. Lett. 56, 22 (1986).

    Article  ADS  Google Scholar 

  7. I. S. Towner and J. C. Hardy, Nucl. Phys. A 205, 33 (1973).

    Article  ADS  Google Scholar 

  8. J. C. Hardy and I. S. Towner, Nucl. Phys. A 254, 221 (1975).

    Article  ADS  Google Scholar 

  9. I. S. Towner, J. C. Hardy, and M. Harvey, Nucl. Phys. A 284, 269 (1977).

    Article  ADS  Google Scholar 

  10. I. S. Towner and J. C. Hardy, Phys. Rev. C 66, 035501 (2002).

    Article  ADS  Google Scholar 

  11. I. S. Towner and J. C. Hardy, J. Phys. G 29, 197 (2003).

    Article  ADS  Google Scholar 

  12. I. S. Towner and J. C. Hardy, Phys. Rev. C 77, 025501 (2008).

    Article  ADS  Google Scholar 

  13. J. C. Hardy and I. S. Towner, Phys. Rev.C 79, 055502 (2009).

    Article  ADS  Google Scholar 

  14. J. C. Hardy and I. S. Towner, Nucl. Phys. A 844, 138c (2010).

    Article  ADS  Google Scholar 

  15. W. E. Ormand and B. A. Brown, Phys. Rev. Lett. 62, 866 (1989).

    Article  ADS  Google Scholar 

  16. W. E. Ormand and B. A. Brown, Phys. Rev. C 52, 2455 (1995).

    Article  ADS  Google Scholar 

  17. F. C. Barker, Nucl. Phys. A 537, 134 (1992).

    Article  ADS  Google Scholar 

  18. F. C. Barker, Nucl. Phys. A 579, 62 (1994).

    Article  ADS  Google Scholar 

  19. P. Navrátil, B. R. Barrett, and W. E. Ormand,, Phys. Rev. C 56, 22542 (1997).

    Article  ADS  Google Scholar 

  20. D. H. Wilkinson, Phys. Lett. B 65, 9 (1976).

    Article  ADS  Google Scholar 

  21. D. H. Wilkinson, Nucl. Instrum. Methods Phys. Res. A 335, 201 (1993).

    Article  ADS  Google Scholar 

  22. D. H. Wilkinson, Nucl. Instrum. Methods Phys. Res. A 488, 654 (2002).

    Article  ADS  Google Scholar 

  23. D. H. Wilkinson, Nucl. Instrum. Methods Phys. Res. A 495, 65 (2002).

    Article  ADS  Google Scholar 

  24. D. H. Wilkinson, J. Phys. G 29, 189 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  25. D. H. Wilkinson, Nucl. Instrum. Methods Phys. Res. A 526, 386 (2004).

    Article  ADS  Google Scholar 

  26. D. H. Wilkinson, Nucl. Instrum. Methods Phys. Res. A 543, 497 (2005).

    Article  ADS  Google Scholar 

  27. D. H. Wilkinson, Nucl. Instrum. Methods Phys. Res. A 555, 457 (2005).

    Article  ADS  Google Scholar 

  28. G. F. Grinyer, C. E. Svensson, and B. A. Brown, Nucl. Instrum. Methods Phys. Res. A 622, 236 (2010).

    Article  ADS  Google Scholar 

  29. N. Auerbach, Phys. Rep. 98, 273 (1983).

    Article  ADS  Google Scholar 

  30. N. Auerbach, Phys. Rev. C 79, 035502 (2009).

    Article  ADS  Google Scholar 

  31. N. I. Pyatov and D. I. Salamov, Nukleonika 22, 127 (1977).

    Google Scholar 

  32. A. E. Çalık, M. Gerçeklioğlu and D. I. Salamov, Z. Naturforsch. 64a, 865 (2009).

    Google Scholar 

  33. N. I. Pyatov, D. I. Salamov, M. I. Baznat, et al., Sov. J. Nucl. Phys. 29, 10 (1979).

    Google Scholar 

  34. T. Babacan, D. I. Salamov, A. Küçükbursa, et al., J. Phys. G 30, 759 (2004).

    Article  ADS  Google Scholar 

  35. A. Küçükbursa, D. I. Salamov, T. Babacan, and H. A. Aygör, Pramana 63, 947 (2004).

    Article  ADS  Google Scholar 

  36. T. Babacan, D. I. Salamov, and A. Küçükbursa, Phys. Rev. C 71, 037303 (2005).

    Article  ADS  Google Scholar 

  37. D. I. Salamov, T. Babacan, A. Küçükbursa, et al., Pramana 66, 1105 (2006).

    Article  ADS  Google Scholar 

  38. D. I. Salamov, S. Ünlü, and N. Çakmak, Pramana 69, 369 (2007).

    Article  ADS  Google Scholar 

  39. T. Babacan, D. I. Salamov, and A. Küçükbursa, Nucl. Phys. A 788, 279 (2007).

    Article  ADS  Google Scholar 

  40. A. E. Çalık, M. Gerçeklioğlu, and D. I. Salamov, Pramana 79, 417 (2012).

    Article  ADS  Google Scholar 

  41. N. Çakmak, S. Ünlü, and C. Selam, Phys. At. Nucl. 75, 8 (2012).

    Article  Google Scholar 

  42. S. Cwiok, J. Kvasil, and B. Choriev, J. Phys. G 10, 903 (1984).

    Article  ADS  Google Scholar 

  43. R. Nojarov and A. Faessler, Nucl. Phys. A 484, 1 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  44. A. Faessler and R. Nojarov, Phys. Rev. C 41, 1243 (1990).

    Article  ADS  Google Scholar 

  45. O. Civitarese and M. C. Licciardo, Phys. Rev. C 41, 1778 (1990).

    Article  ADS  Google Scholar 

  46. H. Sakamoto and T. Kishimoto, Phys. Lett. B 245, 321 (1990).

    Article  ADS  Google Scholar 

  47. S. Cwiok, J. Kvasil, and R. G. Nzmitdinov, Czech. J. Phys. 40, 864 (1990).

    Article  ADS  Google Scholar 

  48. O. Civitarese, P. O. Hess, J. G. Hirsch, and M. Reboiro, Phys. Rev. C 59, 194 (1999).

    Article  ADS  Google Scholar 

  49. P. Magierski and R. Wyss, Phys. Lett. B 486, 54 (2000).

    Article  ADS  Google Scholar 

  50. A. A. Kuliev, A. Faessler, M. Güner, and V. Rodin, J. Phys. G 30, 1253 (2004).

    Article  ADS  Google Scholar 

  51. T. Shoji and Y. R. Shimizu, Prog. Theor. Phys. 121, 319 (2009).

    Article  ADS  MATH  Google Scholar 

  52. V. G. Soloviev, Theory of Complex Nuclei (Pergamon, New York, 1976).

    Google Scholar 

  53. H. Liang, N. van Giai, and J. Meng, arXiv: 0904.3673v2 [nucl-th].

  54. W.-H. Long, N. van Giai, and J. Meng, Phys. Lett. B 640, 150 (2006).

    Article  ADS  Google Scholar 

  55. G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 71, 024312 (2005)

    Article  ADS  Google Scholar 

  56. W.M. Yao et al., J. Phys. G 33, 1 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Çalık.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çalık, A.E., Gerçeklioğlu, M. & Selam, C. The influence of pairing correlations on the isospin symmetry breaking corrections of superallowed Fermi beta decays. Phys. Atom. Nuclei 76, 549–556 (2013). https://doi.org/10.1134/S1063778813040030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778813040030

Keywords

Navigation