Advertisement

Physics of Atomic Nuclei

, Volume 76, Issue 1, pp 1–15 | Cite as

Nuclear-nuclear collision centrality determination by the spectators calorimeter for the MPD setup at the NICA facility

  • M. B. Golubeva
  • F. F. Guber
  • A. P. Ivashkin
  • A. Yu. Isupov
  • A. B. Kurepin
  • A. G. Litvinenko
  • E. I. Litvinenko
  • I. I. Migulina
  • V. F. Peresedov
Nuclei Experiment

Abstract

The work conditions of the hadron calorimeter for spectators registration (Zero Degree Calorimeter, ZDC) were studied for the heavy nuclei collisions with the several GeV invariant energy. The ZDC simulations were performed for the MPD (Multi-Purpose Detector) at the NICA (Nuclotron-based Ion Collider fAcility) collider, which are under developement at the Joint Institute for Nuclear Research (JINR, Dubna). Taking into account the spectator nuclear fragments leads to a nonmonotonic dependence of the ZDC response on the impact parameter. The reason for this dependence studied with several event generators is the primary beam hole in the ZDC center. It is shown, that the ZDC signal should be combined with a data from other MPD@NICA detector subsystems to determine centrality.

Keywords

Calorimeter Atomic Nucleus Impact Parameter Hadron Calorimeter Nuclear Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Sissakian, A. S. Sorin, and V. D. Toneev, nuclth/0608032.Google Scholar
  2. 2.
    A. N. Sissakian et al., nucl-ex/0601034.Google Scholar
  3. 3.
    A. N. Sissakian et al., Part. Nucl. Lett. 5, 1 (2008).CrossRefGoogle Scholar
  4. 4.
  5. 5.
    B. B. Back et al., Nucl. Phys. A 757, 28 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    K. Adcox et al., Nucl. Phys. A 757, 184 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    I. Arsene et al., Nucl. Phys. A 757, 1 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    J. Adams et al., Nucl. Phys. A 757, 102 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    K. Adcox et al., Phys. Rev. Lett. 89, 212301 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    S. Afanasiev et al., Phys. Rev. C 80, 024909 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    R. Adcox et al., Phys. Rev. Lett. 88, 022301 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    C. Adler et al., Phys. Rev. Lett. 90, 082302 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    A. Adare et al., Phys. Rev. Lett. 98, 232002 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    R. L. Ray and M. Daugherity, nucl-ex/0702039v2 (2008).Google Scholar
  15. 15.
    M. L. Miller et al., nucl-ex/0701025v1.Google Scholar
  16. 16.
    X.-N. Wang and M. Gyulassy, Phys. Rev. D 44, 3501 (1991).ADSCrossRefGoogle Scholar
  17. 17.
    K. Werner, Phys. Lett. B 208, 520 (1988).ADSCrossRefGoogle Scholar
  18. 18.
    H. Sorge, H. Stoecker, and W. Greiner, Nucl. Phys. A 498, 567C (1989).ADSCrossRefGoogle Scholar
  19. 19.
  20. 20.
    C. E. Aguiar et al., Braz. J. Phys. 34, 319 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    S. Afanasiev et al., Nucl. Instrum. Methods Phys. Res. A 421, 227 (1999).CrossRefGoogle Scholar
  22. 22.
    B. I. Abelev et al., Phys. Rev. Lett. 103, 172301 (2009).ADSCrossRefGoogle Scholar
  23. 23.
  24. 24.
    H. Appelshauser et al., Eur. Phys. J. A 2, 383 (1998).ADSCrossRefGoogle Scholar
  25. 25.
    M. Allen et al., Nucl. Instrum. Methods Phys. Res. A 499, 549 (2003).ADSCrossRefGoogle Scholar
  26. 26.
  27. 27.
    A. Adare et al., Phys. Rev. Lett. 105, 062301 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    C.W. Fabjan, Calorimetry inHigh-Energy Physics. Experimental Techniques in Nuclear and Particle Physics, Ed. by T. Ferbel (World Sci., Singapore, 1991).Google Scholar
  29. 29.
    Yu. D. Bayukov et al., Sov. J. Nucl. Phys. 35, 559 (1982).Google Scholar
  30. 30.
    H. H. Heckman et al., Phys. Rev. Lett. 28, 926 (1972).ADSCrossRefGoogle Scholar
  31. 31.
    D. E. Greiner et al., Phys. Rev. Lett. 35, 152 (1975).ADSCrossRefGoogle Scholar
  32. 32.
    J. Benecke et al., Phys. Rev. 188, 2159 (1969).ADSCrossRefGoogle Scholar
  33. 33.
    J. V. Geaga et al., Phys. Rev. Lett. 45, 1993 (1980).ADSCrossRefGoogle Scholar
  34. 34.
    S. B. Kaufman et al., Phys. Rev. C 22, 1897 (1980).ADSCrossRefGoogle Scholar
  35. 35.
    S. Afanasiev et al., Nucl. Instrum. Methods Phys. Res. A 430, 210 (1999).ADSCrossRefGoogle Scholar
  36. 36.
    R. Brun et al., GEANT Users Guide, W5013 of CERN Program Library (CERN, Geneva, Switzerland, 1994).Google Scholar
  37. 37.
    S. G. Mashnik et al., nucl-th/0210065v2.Google Scholar
  38. 38.
  39. 39.
  40. 40.
  41. 41.
    R. Ammar et al., JETP Lett. 49, 219 (1989).ADSGoogle Scholar
  42. 42.
    A. S. Goldhaber, Phys. Lett. B 53, 306 (1974).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • M. B. Golubeva
    • 1
  • F. F. Guber
    • 1
  • A. P. Ivashkin
    • 1
  • A. Yu. Isupov
    • 2
  • A. B. Kurepin
    • 1
  • A. G. Litvinenko
    • 2
  • E. I. Litvinenko
    • 2
  • I. I. Migulina
    • 2
  • V. F. Peresedov
    • 2
  1. 1.Institute for Nuclear ResearchRussian Academy of SciencesMoscowRussia
  2. 2.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia

Personalised recommendations