Skip to main content
Log in

Absorption of Λ(1520) hyperons in photon-nucleus collisions

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

In the framework of the nuclear spectral function approach for incoherent primary photon-nucleon and secondary pion-nucleon production processes we study the inclusive Λ(1520)-hyperon production in the interaction of 2-GeV photons with nuclei. In particular, the A and momentum dependences of the absolute and relative Λ(1520)-hyperon yields are investigated in two scenarios for its in-medium width. Our model calculations show that the pion-nucleon production channel contributes appreciably to the Λ(1520) creation at intermediate momenta both in light and heavy nuclei in the chosen kinematics and, hence, has to be taken into consideration on close examination of the dependences of the Λ(1520)-hyperon yields on the target mass number with the aim to get information on its width in the medium. They also demonstrate that the A and momentum dependences of the absolute and relative Λ(1520)-hyperon production cross sections at incident energy of interest are markedly sensitive to the Λ(1520) in-medium width, which means that these observables may be an important tool to determine the above width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Rapp and J. Wambach, Adv. Nucl. Phys. 25, 1 (2000); R. S. Hayano and T. Hatsuda, Rev. Mod. Phys. 82, 2949 (2010); S. Leupold, V. Metag, and U. Mosel, Int. J. Mod. Phys. E 19, 147 (2010).

    Article  Google Scholar 

  2. M. M. Kaskulov and E. Oset, AIP Conf. Proc. 842, 483 (2006) [nucl-th/0512108].

    Article  ADS  Google Scholar 

  3. M.M. Kaskulov and E. Oset, Phys. Rev. C 73, 045213 (2006).

    Article  ADS  Google Scholar 

  4. T. Hatsuda and S. H. Lee, Phys. Rev. C 46, R34 (1992).

    Article  ADS  Google Scholar 

  5. F. Klingl, T. Waas, and W. Weise, Phys. Lett. B 431, 254 (1998).

    Article  ADS  Google Scholar 

  6. E. Oset and A. Ramos, Nucl. Phys. A 679, 616 (2001); D. Cabrera and M. J. Vicente Vacas, Phys. Rev. C 67, 045203 (2003).

    Article  ADS  Google Scholar 

  7. L. Tolós et al., Phys. Rev. C 82, 045210 (2010).

    Article  ADS  Google Scholar 

  8. V. K. Magas, L. Roca, and E. Oset, Phys. Rev. C 71, 065202 (2005).

    Article  ADS  Google Scholar 

  9. D. Cabrera et al., Nucl. Phys. A 733, 130 (2004).

    Article  ADS  Google Scholar 

  10. P. Muehlich and U. Mosel, Nucl. Phys. A 765, 188 (2006).

    Article  ADS  Google Scholar 

  11. T. Ishikawa et al., Phys. Lett. B 608, 215 (2005).

    Article  ADS  Google Scholar 

  12. A. Sibirtsev, H.-W. Hammer, and U.-G. Meissner, Eur. Phys. J. A 37, 287 (2008).

    Article  ADS  Google Scholar 

  13. A. Sibirtsev et al., Eur. Phys. J. A 29, 209 (2006).

    Article  ADS  Google Scholar 

  14. C. Djalali et al., J. Phys. G. 35, 104035 (2008).

    Article  ADS  Google Scholar 

  15. E. Ya. Paryev, Phys. At. Nucl. 71, 1954 (2008); J. Phys. G 36, 015103 (2009).

    Article  Google Scholar 

  16. M. H. Wood et al., Phys. Rev. Lett. 105, 112301 (2010).

    Article  ADS  Google Scholar 

  17. A. Polyanskiy et al., Phys. Lett. B 695, 74 (2011).

    Article  ADS  Google Scholar 

  18. P. Muehlich and U. Mosel, Nucl. Phys. A 773, 156 (2006).

    Article  ADS  Google Scholar 

  19. M. Kaskulov, E. Hernandez, and E. Oset, Eur. Phys. J. A 31, 245 (2007).

    Article  ADS  Google Scholar 

  20. E. Oset, M. Kaskulov, H. Nagahiro, et al., arXiv: 0710.3033 [nucl-th].

  21. M. Kotulla et al., Phys. Rev. Lett. 100, 192302 (2008).

    Article  ADS  Google Scholar 

  22. F. Riek et al., arXiv: 1003.0910 [nucl-th].

  23. R. Rapp, arXiv: 1010.1719 [nucl-th].

  24. M. Kaskulov, L. Roca, and E. Oset, Eur. Phys. J. A 28, 139 (2006).

    Article  ADS  Google Scholar 

  25. E. Ya. Paryev, Phys. At.Nucl. 73, 2035 (2010).

    Article  Google Scholar 

  26. Z. Rudy et al., Eur.Phys. J. A 15, 303 (2002).

    Article  ADS  Google Scholar 

  27. Z. Rudy et al., Eur. Phys. J. A 23, 379 (2005); Eur. Phys. J. A 24, 159(E) (2005) [nucl-th/0411009].

    Article  ADS  Google Scholar 

  28. M. L. Benabderrahmane et al., Phys. Rev. Lett. 102, 182501 (2009); arXiv: 0807.3361 [nucl-ex].

    Article  ADS  Google Scholar 

  29. E. Ya. Paryev, Eur. Phys. J. A 23, 453 (2005).

    Article  ADS  Google Scholar 

  30. C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).

    Article  ADS  Google Scholar 

  31. O. Benhar, nucl-th/0307061.

  32. Y. Nara, A. Ohnishi, T. Harada, and A. Engel, Nucl. Phys. A 614, 433 (1997).

    Article  ADS  Google Scholar 

  33. F.W. Wieland et al., arXiv: 1011.0822 [nucl-ex].

  34. N. Muramatsu et al., Phys. Rev. Lett. 103, 012001 (2009).

    Article  ADS  Google Scholar 

  35. D. P. Barber et al., Z. Phys. C 7, 17 (1980).

    Article  ADS  Google Scholar 

  36. A. M. Boyarski et al., Phys. Lett. B 34, 547 (1971).

    Article  ADS  Google Scholar 

  37. Z.W. Zhao et al., AIP Conf. Proc. 1257, 562 (2010).

    Article  ADS  Google Scholar 

  38. H. Kohri et al., Phys. Rev. Lett. 104, 172001 (2010).

    Article  ADS  Google Scholar 

  39. S.-I. Nam, A. Hosaka, and H. C. Kim, Phys. Rev. D 71, 114012 (2005).

    Article  ADS  Google Scholar 

  40. A. I. Titov et al., Phys. Rev. C 72, 035206 (2005).

    Article  ADS  Google Scholar 

  41. A. Sibirtsev et al., Eur. Phys. J. A 31, 221 (2007).

    Article  ADS  Google Scholar 

  42. S.-I. Nam et al., Phys. Rev. D 75, 014027 (2007).

    Article  ADS  Google Scholar 

  43. S.-I. Nam and C.-W. Kao, Phys. Rev. C 81, 055206 (2010).

    Article  ADS  Google Scholar 

  44. J.-J. Xie and J. Nieves, Phys. Rev. C 82, 045205 (2010).

    Article  ADS  Google Scholar 

  45. S. V. Efremov and E. Ya. Paryev, Eur. Phys. J. A 1, 99 (1998); E. Ya. Paryev, Eur. Phys. J. A 7, 127 (2000).

    Article  ADS  Google Scholar 

  46. E. Ya. Paryev, Eur. Phys. J. A 9, 521 (2000).

    Article  ADS  Google Scholar 

  47. E. Ya. Paryev, Eur. Phys. J. A 17, 145 (2003).

    Article  ADS  Google Scholar 

  48. CNS Data Analysis Center, The George Washington University, http://gwdac.phys.gwu.edu

  49. A. S. Iljinov et al., Nucl. Phys. A 616, 575 (1997).

    Article  ADS  Google Scholar 

  50. O. Benhar et al., Phys. Rev. D 72, 053005 (2005); O. Benhar and G. Veneziano, arXiv: 1103.0987 [nuclth].

    Article  ADS  Google Scholar 

  51. A. Sibirtsev and M. Büscher, Z. Phys. A 347, 191 (1994).

    Article  ADS  Google Scholar 

  52. V. K. Magas et al., arXiv: 0911.3614 [nucl-th].

  53. A. Zabrodin et al., Phys. Rev. C 55, R1617 (1997).

    Article  ADS  Google Scholar 

  54. A. Braghieri et al., Phys. Lett. B 363, 46 (1995).

    Article  ADS  Google Scholar 

  55. ABBHHM Collab., Phys. Rev. 175, 1669 (1968).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paryev, E.Y. Absorption of Λ(1520) hyperons in photon-nucleus collisions. Phys. Atom. Nuclei 75, 1523–1535 (2012). https://doi.org/10.1134/S1063778812110178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778812110178

Keywords

Navigation