Physics of Atomic Nuclei

, Volume 75, Issue 10, pp 1288–1293 | Cite as

Constants of motion of the four-particle Calogero model

Elementary Particles and Fields Theory

Abstract

We present the explicit expressions of the complete set of constants of motion of four-particle Calogero model with excluded center of mass, i.e. of the A3 rational Calogero model. Then we find the constants of motion of its spherical part, defining two-dimensional 12-center spherical oscillator, with the force centers located at the vertexes of cuboctahedron.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Calogero, J. Math. Phys. 10, 2191 (1969).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    F. Calogero, J. Math. Phys. 12, 419 (1971).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    A. P. Polychronakos, J. Phys. A 39, 12793 (2006).MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    J. Wolfes, J. Math. Phys. 15, 1420 (1974); F. Calogero and C. Marchioro, J. Math. Phys. 15, 1425 (1974); M. A. Olshanetsky and A.M. Perelomov, Lett. Math. Phys. 2, 7 (1977).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    B. Sutherland, Phys. Rev. A 4, 2019 (1971); 5, 1372 (1972).ADSCrossRefGoogle Scholar
  6. 6.
    J. A. Minahan and A. P. Polychronakos, Phys. Lett. B 302, 265 (1993); A. P. Polychronakos, Phys. Rev. Lett. 70, 2329 (1993).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    A. Jevicki and H. Levine, Phys. Rev. Lett. 44, 1443 (1980); A. P. Polychronakos, Phys. Lett. B 266, 29 (1991).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    K. Hikami and M. Wadati, Phys. Rev. Lett. 73, 1191 (1994).MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    D. Bernard, M. Gaudin, F. D. M. Haldane, and V. Pasquier, J. Phys. A 26, 5219 (1993).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    F. J. Dyson, J. Math. Phys. 3, 140, 157, 166 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    J. A. Minahan and A. P. Polychronakos, Phys. Lett. B 326, 288 (1994); A. Gorsky and N. Nekrasov, Nucl. Phys. B 414, 213 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    G.W. Gibbons and P. K. Townsend, Phys. Lett. B 454, 187 (1999).MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    A. Galajinsky, O. Lechtenfeld, and K. Polovnikov, Phys. Lett. B 643, 221 (2006); J. High Energy Phys. 0711, 008 (2007).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    N. Gurappa and P. K. Panigrahi, Phys. Rev. B 59, R2490 (1999); P. K. Ghosh, Nucl. Phys. B 595, 519 (2001); T. Brzeziński, C. Gonera, and P. Maślanka, Phys. Lett. A 254, 185 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    J. Moser, Adv. Math. 16, 197 (1975).ADSMATHCrossRefGoogle Scholar
  16. 16.
    T. Hakobyan and A. Nersessian, Phys. Lett. A 373, 1001 (2009).MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    T. Hakobyan, A. Nersessian, and V. Yeghikyan, J. Phys. A 42, 205206 (2009).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    T. Hakobyan, S. Krivonos, O. Lechtenfeld, and A. Nersessian, Phys. Lett. A 374, 801 (2010).MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    T. Hakobyan, O. Lechtenfeld, A. Nersessian, and A. Saghatelian, J. Phys. A 44, 055205 (2011).MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    O. Lechtenfeld, A. Nersessian, and V. Yeghikyan, Phys. Lett. A 374, 4647 (2010).MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    S. Wojciechowski, Phys. Lett. A 95, 279 (1983).MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    C. Jacobi, Gesammelte Werke (Berlin) 4, 533 (1866).Google Scholar
  23. 23.
    G. Rastelli, arXiv: 1001.0752 [math-ph].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Yerevan State UniversityYerevanArmenia

Personalised recommendations