Advertisement

Physics of Atomic Nuclei

, Volume 75, Issue 10, pp 1288–1293 | Cite as

Constants of motion of the four-particle Calogero model

  • A. Saghatelian
Elementary Particles and Fields Theory

Abstract

We present the explicit expressions of the complete set of constants of motion of four-particle Calogero model with excluded center of mass, i.e. of the A 3 rational Calogero model. Then we find the constants of motion of its spherical part, defining two-dimensional 12-center spherical oscillator, with the force centers located at the vertexes of cuboctahedron.

Keywords

Atomic Nucleus Poisson Bracket Conformal Dimension Force Center Spherical Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Calogero, J. Math. Phys. 10, 2191 (1969).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    F. Calogero, J. Math. Phys. 12, 419 (1971).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    A. P. Polychronakos, J. Phys. A 39, 12793 (2006).MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    J. Wolfes, J. Math. Phys. 15, 1420 (1974); F. Calogero and C. Marchioro, J. Math. Phys. 15, 1425 (1974); M. A. Olshanetsky and A.M. Perelomov, Lett. Math. Phys. 2, 7 (1977).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    B. Sutherland, Phys. Rev. A 4, 2019 (1971); 5, 1372 (1972).ADSCrossRefGoogle Scholar
  6. 6.
    J. A. Minahan and A. P. Polychronakos, Phys. Lett. B 302, 265 (1993); A. P. Polychronakos, Phys. Rev. Lett. 70, 2329 (1993).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    A. Jevicki and H. Levine, Phys. Rev. Lett. 44, 1443 (1980); A. P. Polychronakos, Phys. Lett. B 266, 29 (1991).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    K. Hikami and M. Wadati, Phys. Rev. Lett. 73, 1191 (1994).MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    D. Bernard, M. Gaudin, F. D. M. Haldane, and V. Pasquier, J. Phys. A 26, 5219 (1993).MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    F. J. Dyson, J. Math. Phys. 3, 140, 157, 166 (1962).MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    J. A. Minahan and A. P. Polychronakos, Phys. Lett. B 326, 288 (1994); A. Gorsky and N. Nekrasov, Nucl. Phys. B 414, 213 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    G.W. Gibbons and P. K. Townsend, Phys. Lett. B 454, 187 (1999).MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    A. Galajinsky, O. Lechtenfeld, and K. Polovnikov, Phys. Lett. B 643, 221 (2006); J. High Energy Phys. 0711, 008 (2007).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    N. Gurappa and P. K. Panigrahi, Phys. Rev. B 59, R2490 (1999); P. K. Ghosh, Nucl. Phys. B 595, 519 (2001); T. Brzeziński, C. Gonera, and P. Maślanka, Phys. Lett. A 254, 185 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    J. Moser, Adv. Math. 16, 197 (1975).ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    T. Hakobyan and A. Nersessian, Phys. Lett. A 373, 1001 (2009).MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    T. Hakobyan, A. Nersessian, and V. Yeghikyan, J. Phys. A 42, 205206 (2009).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    T. Hakobyan, S. Krivonos, O. Lechtenfeld, and A. Nersessian, Phys. Lett. A 374, 801 (2010).MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    T. Hakobyan, O. Lechtenfeld, A. Nersessian, and A. Saghatelian, J. Phys. A 44, 055205 (2011).MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    O. Lechtenfeld, A. Nersessian, and V. Yeghikyan, Phys. Lett. A 374, 4647 (2010).MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    S. Wojciechowski, Phys. Lett. A 95, 279 (1983).MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    C. Jacobi, Gesammelte Werke (Berlin) 4, 533 (1866).Google Scholar
  23. 23.
    G. Rastelli, arXiv: 1001.0752 [math-ph].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Yerevan State UniversityYerevanArmenia

Personalised recommendations