Skip to main content
Log in

A microscopic study on shape transition and shape coexistence in superdeformed nuclei

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Superdeformed nuclei at high-spin states in several mass regions are investigated within a microscopic approach using cranked Nilsson-Strutinsky formalism to explore the equilibrium deformations in the ground state and their evolution with spin. Shape transition from normal deformed to superdeformed states with increasing spin is studied and a clear picture of shape coexistence is provided. Detailed information on spin, rotational energy, dynamical moment of inertia, and rotational frequency of superdeformed rotational bands is presented and the general features of superdeformed bands in certain mass regions are outlined. Rotational energy and dynamical moment of inertia are compared with available experimental data and the impact of temperature and pairing on superdeformed configuration are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Nikšić, D. Vretenar, P. Ring, and G. A. Lalazissis, Phys. Rev. C 65, 054320 (2002).

    Article  ADS  Google Scholar 

  2. P. J. Twin et al., Phys. Rev. Lett. 57, 811 (1986).

    Article  ADS  Google Scholar 

  3. D. T. Scholes et al., Phys. Rev. C 70, 054314 (2004).

    Article  ADS  Google Scholar 

  4. M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).

    Article  ADS  Google Scholar 

  5. A. V. Afanasjev and I. Ragnarsson, Nucl. Phys. A 608, 176 (1996).

    Article  ADS  Google Scholar 

  6. R. Wyss and W. Satula, Phys. Lett. B 351, 393 (1995).

    Article  ADS  Google Scholar 

  7. T. Mizusaki, T. Otsuka, M. Honma, and B. A. Brown, Phys. Rev. C 63, 044306 (2001).

    Article  ADS  Google Scholar 

  8. K. Hara and Y. Sun, Int. J. Mod. Phys. E 4, 637 (1995).

    Article  ADS  Google Scholar 

  9. M. Bender, H. Flocard, and P.-H. Heenen, Phys. Rev. C 68, 044321 (2003).

    Article  ADS  Google Scholar 

  10. J. Dudek, B. Herskind, W. Nazarewicz, et al., Phys. Rev. C 38, 940 (1988).

    Article  ADS  Google Scholar 

  11. P. Taras et al., Phys. Rev. Lett. 61, 1348 (1988).

    Article  ADS  Google Scholar 

  12. P. Cejnar, Phys. Rev. Lett. 90, 112501 (2003).

    Article  ADS  Google Scholar 

  13. L. D. Landau and E.M. Lifshitz, Statistical Physics (Butterworth-Heinemann, Oxford, 2001), Vol. 5.

    Google Scholar 

  14. T. R. Rajasekaran and G. Kanthimathi, Eur. Phys. J. A 35, 57 (2008).

    Article  ADS  Google Scholar 

  15. T. R. Rajasekaran and G. Kanthimathi, Acta Phys. Pol. B 39, 1391 (2008).

    ADS  Google Scholar 

  16. M. Rajasekaran, T. R. Rajasekaran, N. Arunachalam, and V. Devanathan, Phys. Rev. Lett. 61, 2077 (1988); M. Rajasekaran, N. Arunachalam, T. R. Rajasekaran, and V. Devanathan, Phys. Rev. C 38, 1926 (1988).

    Article  ADS  Google Scholar 

  17. L. G. Moretto, Nucl. Phys. A 182, 641 (1972); 216, 1 (1973); 185, 145 (1972); 180, 337 (1972).

    Article  ADS  Google Scholar 

  18. M. Rajasekaran, T. R. Rajasekaran, and N. Arunachalam, Phys. Rev. C 37, 307 (1988); T. R. Rajasekaran, S. Selvaraj, and S. Santhosh Kumar, Pramana 60, 75 (2003).

    Article  ADS  Google Scholar 

  19. T. Bengtsson et al., Nucl. Phys. A 496, 56 (1989).

    Article  ADS  Google Scholar 

  20. K. Lagergren et al., Phys. Rev. Lett. 87, 022502 (2001).

    Article  ADS  Google Scholar 

  21. Yang Sun, Jing-ye Zhang, Mike Guidry, and Cheng-Li Wu, Phys. Rev. Lett. 83, 686 (1999).

    Article  ADS  Google Scholar 

  22. J. Dobaczewski, J. Dudek, and R. Wyss, Phys. Rev. C 67, 034308 (2003).

    Article  ADS  Google Scholar 

  23. G. G. Adamian, N. V. Antonenko, R. V. Jolos, et al., Phys. Rev. C 67, 054303 (2003).

    Article  ADS  Google Scholar 

  24. W. Nazarewicz, S. Cwoik, J. Dobaczewski, and J.X. Saladin, Acta Phys. Pol. B 26, 189 (1995).

    Google Scholar 

  25. E. Ideguchi et al., Phys. Rev. Lett. 87, 222501 (2001); C. J. Chiara et al., Phys.Rev.C 67, 041303(R) (2003).

    Article  ADS  Google Scholar 

  26. C. E. Svensson et al., Phys. Rev. Lett. 79, 1233 (1997); 82, 3400 (1999); Phys. Rev. C 63, 061301(R) (2001).

    Article  ADS  Google Scholar 

  27. J. A. Sheikh, R. Palit, and S. Frauendorf, Phys. Rev. C 72, 041301(R) (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanthimathi, G., Boomadevi, N. & Rajasekaran, T.R. A microscopic study on shape transition and shape coexistence in superdeformed nuclei. Phys. Atom. Nuclei 75, 949–957 (2012). https://doi.org/10.1134/S106377881208008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377881208008X

Keywords

Navigation