Skip to main content
Log in

Quantum simulations of strongly coupled quark-gluon plasma

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A strongly coupled quark-gluon plasma (QGP) of heavy constituent quasi-particles is studied by a path-integral Monte-Carlo method. This approach is a quantum generalization of the classical molecular dynamics by Gelman, Shuryak, and Zahed. It is shown that this method is able to reproduce the QCD lattice equation of state. The results indicate that the QGP reveals liquid-like rather than gaslike properties. Quantum effects turned out to be of prime importance in these simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Shuryak, Prog. Part. Nucl. Phys. 62, 48 (2009).

    Article  ADS  Google Scholar 

  2. A. Bazavov et al., Phys. Rev. D 80, 014504 (2009).

    Article  ADS  Google Scholar 

  3. Z. Fodor and S. D. Katz, arXiv: 0908.3341 [hep-ph].

  4. F. Csikor et al., JHEP 0405, 046 (2004).

    Article  ADS  Google Scholar 

  5. D. F. Litim and C. Manuel, Phys. Rev. Lett. 82, 4981 (1999); Nucl. Phys. B 562, 237 (1999); Phys. Rev. D 61, 125004 (2000); Phys. Rept. 364, 451 (2002).

    Article  ADS  Google Scholar 

  6. M. Hofmann et al., Phys. Lett. B 478, 161 (2000).

    Article  ADS  Google Scholar 

  7. B.A. Gelman, E. V. Shuryak, and I. Zahed, Phys.Rev. C 74, 044908, 044909 (2006).

    Article  ADS  Google Scholar 

  8. S. Cho and I. Zahed, Phys. Rev. C 79, 044911 (2009); 80, 014906 (2009); 82, 054907, 044905 (2010); arXiv: 0910.1548 [nucl-th]; K. Dusling and I. Zahed, Nucl. Phys. A 833, 172 (2010).

    Article  ADS  Google Scholar 

  9. M. H. Thoma, IEEE Trans. Plasma Sci. 32, 738 (2004).

    Article  ADS  Google Scholar 

  10. G. Kelbg, Ann. Phys. (Leipzig) 12, 219 (1962); 13, 354 (1963).

    MathSciNet  Google Scholar 

  11. A. V. Filinov, V. O. Golubnychiy, M. Bonitz, et al., Phys. Rev. E 70, 046411 (2004).

    Article  ADS  Google Scholar 

  12. M. Bonitz et al., J. Phys. A 36, 5921 (2003); Phys. Plasmas 15, 055704 (2008).

    Article  ADS  Google Scholar 

  13. V. S. Filinov, M. Bonitz, W. Ebeling, and V. E. Fortov, Plasma Phys. Contr. Fusion 43, 743 (2001).

    Article  ADS  Google Scholar 

  14. V. S. Filinov, M. Bonitz, and V. E. Fortov, JETP Lett. 72, 245 (2000).

    Article  ADS  Google Scholar 

  15. M. Bonitz et al., Phys. Rev. Lett. 95, 235006 (2005).

    Article  ADS  Google Scholar 

  16. V. S. Filinov et al., J. Phys. A 36, 6069 (2003).

    Article  ADS  MATH  Google Scholar 

  17. M. Bonitz, V. S. Filinov, V. E. Fortov, et al., J. Phys. A 39, 4717 (2006).

    Article  ADS  Google Scholar 

  18. V. S. Filinov, H. Fehske, M. Bonitz, V. E. Fortov, and P. Levashov, Phys. Rev. E 75, 036401 (2007).

    Article  ADS  Google Scholar 

  19. V. S. Filinov et al., Contrib. Plasma Phys. 49, 536 (2009).

    Article  Google Scholar 

  20. V. S. Filinov et al., arXiv: 1006.3390 [nucl-th].

  21. P. Petreczky, F. Karsch, E. Laermann, et al., Nucl. Phys. B Proc. Suppl. 106, 513 (2002).

    Article  ADS  Google Scholar 

  22. J. Liao and E. V. Shuryak, Phys. Rev. D 73, 014509 (2006).

    Article  ADS  Google Scholar 

  23. S. K. Wong, Nuovo Cimento A 65, 689 (1970).

    Article  ADS  Google Scholar 

  24. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    MATH  Google Scholar 

  25. V. M. Zamalin, G. E. Norman, and V. S. Filinov, The Monte Carlo Method in Statistical Thermodynamics (Nauka, Moscow, 1977) (in Russian).

    Google Scholar 

  26. A. Peshier, B. Kampfer, O. P. Pavlenko, and G. Soff, Phys. Rev. D 54, 2399 (1996).

    Article  ADS  Google Scholar 

  27. Yu. B. Ivanov, V. V. Skokov, and V. D. Toneev, Phys. Rev. D 71, 014005 (2005).

    Article  ADS  Google Scholar 

  28. F. Karsch and M. Kitazawa, Phys. Rev. D 80, 056001 (2009).

    Article  ADS  Google Scholar 

  29. G. M. Prosperi, M. Raciti, and C. Simolo, Prog. Part. Nucl. Phys. 58, 387 (2007).

    Article  ADS  Google Scholar 

  30. A. V. Filinov, V. S. Filinov, Yu. E. Lozovik, and M. Bonitz, in Introduction to Computational Methods for Many-Body Physics, Ed. by M. Bonitz and D. Semkat (Rinton Press, Princeton, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Filinov.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filinov, V.S., Ivanov, Y.B., Bonitz, M. et al. Quantum simulations of strongly coupled quark-gluon plasma. Phys. Atom. Nuclei 75, 693–697 (2012). https://doi.org/10.1134/S1063778812060130

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778812060130

Keywords

Navigation