Skip to main content
Log in

Evidence for the onset of deconfinement and quest for the critical point by NA49 at the CERN SPS

Physics of Atomic Nuclei Aims and scope Submit manuscript

Cite this article

Abstract

The NA49 results on hadron production obtained in PbPb collisions at SPS energies from 20 to 158 A GeV are shown and discussed as evidence for the onset of deconfinement. The primary measures are the pion yield, the kaon-to-pion ratio and the slope parameter of transverse mass distributions. The possible indication of the QCD critical point signatures was investigated in the event-by-event fluctuations of various observables such as the mean transverse momentum, particle multiplicity and azimuthal angle distributions as well as in the particle ratio fluctuations. The energy dependence of these observables was measured in central PbPb collisions in the full SPS energy range while for analysis of the system size dependence data from pp, CC, SiSi, and PbPb collisions at the top SPS energy were used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Alber et al. (NA49 Collab.), Phys. Rev. Lett. 75, 3814 (1995).

    Article  ADS  Google Scholar 

  2. U.W. Heinz and M. Jacob, nucl-th/0002042.

  3. M. Gaździcki and M. I. Gorenstein, Acta Phys. Polon. B 30, 2705 (1999).

    ADS  Google Scholar 

  4. C. Alt et al. (NA49 Collab.), Phys. Rev. C 77, 024903 (2008).

    Article  ADS  Google Scholar 

  5. M. Gaździcki (for the NA49 Collab.), J. Phys. G 30, S701 (2004).

    Article  Google Scholar 

  6. P. Seyboth et al. (NA49 Collab.), Acta Phys. Polon. B 37, 3429 (2006).

    ADS  Google Scholar 

  7. V. Friese (for the NA49 Collab.), PoS CPOD 2009, 005 (2009); arXiv:0908.2720 [nucl-ex].

    Google Scholar 

  8. Z. Fodor and S. D. Katz, J. High Energy Phys. 0404, 050 (2004).

    Article  ADS  Google Scholar 

  9. P. Braun-Munzinger, J. Cleymans, H. Oeschler, and K. Redlich, Nucl. Phys. A 697, 902 (2002); P. Braun-Munzinger and J. Stachel, J. Phys. G 28, 1971 (2002).

    Article  ADS  Google Scholar 

  10. F. Becattini, J. Manninen, and M. Gaździcki, Phys. Rev. C 73, 044905 (2006).

    Article  ADS  Google Scholar 

  11. F. Becattini et al., Phys. Rev. C 69, 024905 (2004).

    Article  ADS  Google Scholar 

  12. M. A. Stepanov, K. Rajagopal, and E. V. Shuryak, Phys. Rev. D 60, 114028 (1999).

    Article  ADS  Google Scholar 

  13. V. Koch, arXiv:0810.2520 [nucl-th].

  14. S. Afanasiev et al. (NA49 Collab.), Nucl. Instrum. Methods Phys. Res. A 430, 210 (1999).

    Article  ADS  Google Scholar 

  15. H. Sorge, H. Stöcker, and W. Greiner, Nucl. Phys. A 498, 567c (1989).

    Article  ADS  Google Scholar 

  16. S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998).

    Article  ADS  Google Scholar 

  17. E. L. Bratkovskaya et al., Phys. Rev. C 69, 054907 (2004).

    Article  ADS  Google Scholar 

  18. A. Andronic, P. Braun-Munzinger, and J. Stachel, Nucl. Phys. A 772, 167 (2006).

    Article  ADS  Google Scholar 

  19. A. Andronic, P. Braun-Munzinger, and J. Stachel, Acta Phys. Polon. B 40, 1005 (2009).

    ADS  Google Scholar 

  20. M. Gaździcki et al., Braz. J. Phys. 34, 322 (2004).

    Article  Google Scholar 

  21. H. Petersen and M. Bleicher, PoS CPOD 2006, 025 (2006); nucl-th/0611001.

    Google Scholar 

  22. S. V. Akkelin and Yu. M. Sinyukov, Phys. Rev. C 73, 034908 (2006).

    Article  ADS  Google Scholar 

  23. L. Kumar et al. (STAR Collab.), J. Phys. G 36, 064066 (2009).

    Article  ADS  Google Scholar 

  24. G. Wang et al. (STAR Collab.), Nucl. Phys. A 830, 19c (2009).

    Article  ADS  Google Scholar 

  25. D. Cebra et al. (STAR Collab.), arXiv:0903.4702 [nucl-ex].

  26. K. Rajagopal and F. Wilczek, hep-ph/0011333.

  27. C. Bernard et al., Phys. Rev. D 75, 094505 (2007).

    Article  ADS  Google Scholar 

  28. O. Scavenius et al., Phys. Rev. C 64, 045202 (2001).

    Article  ADS  Google Scholar 

  29. R. V. Gavai and S. Gupta, Phys. Rev. D 78, 114503 (2008).

    Article  ADS  Google Scholar 

  30. M. Gaździcki and St. Mrówczyński, Z. Phys. C 54, 127 (1992).

    Article  ADS  Google Scholar 

  31. T. Anticic et al. (NA49 Collab.), Phys. Rev. C 70, 034902 (2004).

    Article  ADS  Google Scholar 

  32. T. Anticic et al. (NA49 Collab.), Phys. Rev. C 79, 044904 (2009).

    Article  ADS  Google Scholar 

  33. C. Alt et al. (NA49 Collab.), Phys. Rev. C 75, 064904 (2007).

    Article  ADS  Google Scholar 

  34. C. Alt et al. (NA49 Collab.), Phys. Rev. C 78, 034914 (2008).

    Article  ADS  Google Scholar 

  35. B. Lungwitz, PhD Thesis (2008), http://edms.cern.ch/document/989055/1

  36. V. P. Konchakovski et al., Phys. Rev. C 73, 034902 (2006).

    Article  ADS  Google Scholar 

  37. K. Grebieszkow et al. (NA49 Collab.), arXiv:0907.4101 [nucl-ex].

  38. K. Grebieszkow et al. (NA49 and NA61 Collabs.), arXiv:0909.0485 [hep-ex].

  39. M. Stepanov, private communications.

  40. Y. Hatta and T. Ikeda, Phys. Rev. D 67, 014028 (2003).

    Article  ADS  Google Scholar 

  41. St. Mrówczyński, Phys. Lett. B 465, 8 (1999).

    Article  ADS  Google Scholar 

  42. M. A. Stepanov, Phys. Rev. Lett. 102, 032301 (2009).

    Article  ADS  Google Scholar 

  43. M. Cheng et al., Phys. Rev. D 79, 074505 (2009); arXiv:0811.1006 [hep-lat].

    Article  ADS  Google Scholar 

  44. St. Mrówczyński, Phys. Lett. B 314, 118 (1993).

    Article  ADS  Google Scholar 

  45. St. Mrówczyński and E. V. Shuryak, Acta Phys. Polon. B 34, 4241 (2003).

    ADS  Google Scholar 

  46. M. Miller and R. Snellings, arXiv:nucl-ex/0312008.

  47. T. Cetner and K. Grebieszkow (NA49 Collab.), arXiv:1008.3412 [nucl-ex].

  48. T. Schuster et al. (NA49 Collab.), PoS CPOD 2009, 029 (2009).

    Google Scholar 

  49. D. Kresan et al. (NA49 Collab.), PoS CPOD 2009, 031 (2009).

    Google Scholar 

  50. C. Alt et al. (NA49 Collab.), Phys. Rev. C 79, 044910 (2009).

    Article  ADS  Google Scholar 

  51. B. I. Abelev et al. (STAR Collab.), Phys. Rev. Lett. 103, 092301 (2009).

    Article  ADS  Google Scholar 

  52. J. Tian et al. (STAR Collab.), J. Phys. G 37, 094044 (2010).

    Article  ADS  Google Scholar 

  53. M. I. Gorenstein, M. Gaździcki, and O. S. Zozulya, Phys. Lett. B 585, 237 (2004).

    Article  ADS  Google Scholar 

  54. M. Bleicher et al., J. Phys. G 25, 1859 (1999); H. Petersen, M. Bleicher, S. A. Bass, and H. Stocker, arXiv:0805.0567 [hep-ph].

    Article  ADS  Google Scholar 

  55. H. Wang, private communications.

  56. V. P. Konchakovski, M. Hauer, M. I. Gorenstein, and E. L. Bratkovskaya, J. Phys. G 36, 125106 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Melkumov.

Additional information

for the NA49 Collaboration

The text was submitted by the authors in English.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Melkumov, G.L., Anticic, T., Baatar, B. et al. Evidence for the onset of deconfinement and quest for the critical point by NA49 at the CERN SPS. Phys. Atom. Nuclei 75, 556–566 (2012). https://doi.org/10.1134/S1063778812050158

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778812050158

Keywords

Navigation