Skip to main content
Log in

Neutron production in collisions between carbon nuclei of energy 2 GeV per nucleon and carbon, aluminum, copper, cadmium, and lead nuclei

  • Elementary Particles and Fields
  • Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Double-differential cross sections for neutron production were measured by the time-of-flight method for the interactions between carbon nuclei of energy 2 GeV per nucleon and carbon, aluminum, copper, cadmium, and lead nuclei. These measurements were performed for angles of 30°, 53°, and 90° in the neutron-energy range fromseveral hundred keVunits to 300MeV. The phenomenologicalmodel of four moving sources was used as a basis in analyzing experimental results and in estimating the contribution to neutron emission from various reaction stages. The temperature parameters determined from the slope of the neutron energy spectra proved to be 22 ± 2 MeV for a hot source (fireball) and 4.5 ± 0.3 MeV for the stage of thermal fragmentation of highly excited heavy nuclear residues. The relative contribution of these two sources to the total neutron yield is independent of the type of the target nucleus and is about 42%, on average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Yurevich, Phys. Part. Nucl. 40, 49 (2009).

    Article  Google Scholar 

  2. L. Heilbronn et al., Phys. Rev. C 73, 024603 (2006).

    Article  ADS  Google Scholar 

  3. V. I. Yurevich et al., Phys. At. Nucl. 69, 1496 (2006).

    Article  Google Scholar 

  4. V. I. Yurevich et al., Phys. At. Nucl. 74, 253 (2011).

    Article  Google Scholar 

  5. V. I. Yurevich et al., Phys. Part. Nucl. Lett. 3, 169 (2006).

    Article  Google Scholar 

  6. V. I. Yurevich, in Proceedings of the 46th International Winter Meeting on Nuclear Physics, Bormio, Italy, 2008, Ric. Sci. Educazione Permanente, Suppl. No. 129 (Univ. Milano, 2008), p. 45.

  7. D. L. Cheshire et al., Phys. Rev. D 10, 25 (1974).

    Article  ADS  Google Scholar 

  8. J. A. Jaros, Preprints Nos. LBL-3849; LBL-7509 (LBL, 1975; 1977).

  9. H. H. Heckman et al., Phys. Rev. C 17, 1735 (1978).

    Article  ADS  Google Scholar 

  10. E. O. Abdurahmanov et al., Reports Nos. E1-11517; E1-12548, JINR (Dubna, 1978; 1979).

  11. V. D. Aksinenko et al., Report No. E1-12713, JINR (Dubna, 1979).

  12. S. Kox et al., Phys. Lett. B 159, 15 (1985).

    Article  ADS  Google Scholar 

  13. S. Kox et al., Phys. Rev. C 35, 1678 (1987).

    Article  ADS  Google Scholar 

  14. B. P. Adyasevich et al., Phys. Lett. B 142, 245 (1984).

    Article  ADS  Google Scholar 

  15. B. V. Jacak et al., Phys. Rev. C 35, 1751 (1987).

    Article  ADS  Google Scholar 

  16. S. Backovic et al., Kratk. Soobshch. OIYaI, No. 2[53]-92, 58 (Joint Inst. Nucl. Phys., Dubna, 1992).

    Google Scholar 

  17. R. N. Bekmirzaev et al., Phys. At. Nucl. 17, 1721 (1995).

    Google Scholar 

  18. A. Budzanowski et al., arXiv:0801.4512v1 [nucl-ex].

  19. D. S. Bracken et al., Phys. Rev. C 69, 034612 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  20. T. Odeh et al., Phys. Rev. Lett. 84, 4557 (2000).

    Article  ADS  Google Scholar 

  21. A. Kowalczyk, arXiv:0801.0700v1 [nucl-th].

  22. J. B. Natowitz et al., Phys. Rev. C 65, 034618 (2002).

    Article  ADS  Google Scholar 

  23. A. Kelić et al., Eur. Phys. J.A 30, 203 (2006).

    Article  ADS  Google Scholar 

  24. X. Ledoux et al., Phys. Rev. C 57, 2375 (1998).

    Article  ADS  Google Scholar 

  25. V. E. Viola et al., Phys. Rev. Lett. 93, 132701 (2004).

    Article  ADS  Google Scholar 

  26. A. Chbihi et al., Eur. Phys. J. A 5, 251 (1999).

    Article  ADS  Google Scholar 

  27. J. Pochodzalla et al., Phys. Rev. Lett. 75, 1040 (1995).

    Article  ADS  Google Scholar 

  28. A. Siwek et al., Phys. Rev. C 57, 2507 (1998).

    Article  ADS  Google Scholar 

  29. J. A. Hauger et al., Phys. Rev. C 57, 764 (1998).

    Article  ADS  Google Scholar 

  30. B. Jakobsson et al., Phys. Lett. B 644, 228 (2007).

    Article  ADS  Google Scholar 

  31. M. N. Andronenko et al., nucl-ex/0112014v1.

  32. V. E. Viola et al., nucl-ex/0604012v1.

  33. D. G. d’Enterria et al., Phys. Lett. B 538, 27 (2002).

    Article  ADS  Google Scholar 

  34. G. D. Westfall et al., Phys. Rev. C 17, 1368 (1978).

    Article  ADS  Google Scholar 

  35. A. I. Warwick et al., Phys. Rev. C 27, 1083 (1983).

    Article  ADS  Google Scholar 

  36. N. T. Porile et al., Phys. Rev. C 39, 1914 (1989).

    Article  ADS  Google Scholar 

  37. N. Shigyo et al., J. Nucl. Sci. Technol. 32, 1 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Yurevich.

Additional information

Original Russian Text © V.I. Yurevich, R.M. Yakovlev, V.G. Lyapin, 2012, published in Yadernaya Fizika, 2012, Vol. 75, No. 2, pp. 214–224.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yurevich, V.I., Yakovlev, R.M. & Lyapin, V.G. Neutron production in collisions between carbon nuclei of energy 2 GeV per nucleon and carbon, aluminum, copper, cadmium, and lead nuclei. Phys. Atom. Nuclei 75, 192–202 (2012). https://doi.org/10.1134/S1063778812010164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778812010164

Keywords

Navigation