Skip to main content
Log in

Superfluid nucleon matter in and out of equilibrium and weak interactions

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The Larkin-Migdal approach to a cold superfluid Fermi liquid is generalized for a nonequilibrium system. The Schwinger-Keldysh diagram technique is applied. The developed formalism is applicable to the pairing in the states with arbitrary angular momenta. We consider the white body radiation problem by calculating probabilities of different direct reactions from a piece of a fermion superfluid. The closed diagram technique is formulated in terms of the full Green’s functions for systems with the pairing correlation. The cutting rules are used to classify the diagrams representing one-nucleon, two-nucleon, etc. processes in the matter. The important role of multi-piece diagrams for the vector-current conservation is demonstrated. In the case of equilibrated systems, dealing with dressed Green’s functions, we demonstrate correspondence between calculations in the Schwinger-Kadanoff-Baym-Keldysh formalism and the ordinary Matsubara technique. As an example we consider neutrino radiation from the neutron pair breaking and formation processes in case of a singlet pairing. Necessary correlation effects are included. The in-medium renormalization of normal and anomalous vertices is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau, Zh. Eksp. Teor. Fiz. 30, 1058 (1956) [Sov. Phys. JETP 3, 920 (1956)]; Zh. Eksp. Teor. Fiz. 32, 59 (1957) [Sov. Phys. JETP 5, 1011 (1957)]; Zh. Eksp. Teor. Fiz. 35, 97 (1958) [Sov. Phys. JETP 8, 70 (1959)]; in Collected Papers of L. D. Landau, Ed. by D. Ter Haar (Gordon and Breach, New York, 1965), p. 75.

    Google Scholar 

  2. E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2 (Pergamon, Oxford, 1980).

    Google Scholar 

  3. A. B. Migdal, Zh. Eksp. Teor. Fiz. 32, 399 (1957) [Sov. Phys. JETP 5, 333 (1957)].

    Google Scholar 

  4. V. M. Galitsky and A. B. Migdal, Sov. Phys. JETP 7, 96 (1958); A. B. Migdal, Nuclear Theory: The Quasiparticle Method (Benjamin, New York, 1968).

    Google Scholar 

  5. A. B. Migdal, Zh. Eksp. Teor. Fiz. 43, 1940 (1962) [Sov. Phys. JETP 16, 1366 (1963)].

    Google Scholar 

  6. A. B. Migdal, Theory of Finite Fermi Systems and Properties of Atomic Nuclei [Nauka, Moscow, 1965 (1st ed.) and 1983 (2nd ed.); Wiley, New York, 1967, transl. 1st ed.].

    Google Scholar 

  7. J. Bardeen, L. N. Cooper, and J. R. Schriffer, Phys. Rev. 106, 162 (1957); 108, 1175 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  8. J. R. Schriffer, Theory of Superconductivity, (Benjamin, New York, 1964).

    Google Scholar 

  9. N. N. Bogoliubov, Zh. Eksp. Teor. Fiz. 34, 58 (1958) [Sov. Phys. JETP 7, 41 (1958)]; Nuovo Cimento 7, 794 (1958).

    Google Scholar 

  10. L. P. Gorkov, Zh. Eksp. Teor. Fiz. 34, 735 (1958) [Sov. Phys. JETP 7, 505 (1958)].

    Google Scholar 

  11. Y. Nambu, Phys. Rev. 117, 648 (1960).

    Article  MathSciNet  ADS  Google Scholar 

  12. G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 (1960) [Sov. Phys. JETP 11, 696 (1960)].

    Google Scholar 

  13. A. B. Migdal, Zh. Eksp. Teor. Fiz. 34, 1438 (1958) [Sov. Phys. JETP 7, 996 (1958)].

    MathSciNet  Google Scholar 

  14. A. B. Migdal, Zh. Eksp. Teor. Fiz. 37, 249 (1959) [Sov. Phys. JETP 10, 176 (1960)].

    MathSciNet  Google Scholar 

  15. A. I. Larkin and A. B. Migdal, Zh. Eksp. Teor. Fiz. 44, 1703 (1963) [Sov. Phys. JETP 17, 1146 (1963)].

    Google Scholar 

  16. A. J. Leggett, Phys. Rev. 140, A1869 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  17. A. J. Leggett, Phys. Rev. 147, 119 (1966).

    Article  ADS  Google Scholar 

  18. J. S. Schwinger, J.Math. Phys. 2, 407 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962).

    MATH  Google Scholar 

  20. L. P. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 1018 (1965)].

    Google Scholar 

  21. L.D. Landau and I. Pomeranchuk, Dok.Akad. Nauk SSSR 92, 553, 735 (1953).

    Google Scholar 

  22. A. B. Migdal, Phys. Rev. 103, 1811 (1956); Zh. Eksp. Teor. Fiz. 32, 633 (1957) [Sov. Phys. JETP 5, 527 (1957)].

    Article  ADS  MATH  Google Scholar 

  23. P. L. Anthony et al., Phys.Rev. Lett. 75, 1949 (1995).

    Article  ADS  Google Scholar 

  24. S. Klein, Rev.Mod. Phys. 71, 1501 (1999).

    Article  ADS  Google Scholar 

  25. R. F. Sawyer, Phys. Rev. Lett. 29, 382 (1972); D. J. Scalapino, Phys. Rev. Lett. 29, 386 (1972).

    Article  ADS  Google Scholar 

  26. A. B. Migdal, Zh. Eksp. Teor. Fiz. 61, 2210 (1971) [Sov. Phys. JETP 34, 1184 (1972)].

    Google Scholar 

  27. A. B. Migdal, Rev.Mod. Phys. 50, 107 (1978).

    Article  ADS  Google Scholar 

  28. A. B. Migdal, E. E. Saperstein, M. A. Troitsky, and D. N. Voskresensky, Phys. Rep. 192, 179 (1990).

    Article  ADS  Google Scholar 

  29. V. P. Berezovoy, I. V. Krive, and E. M. Chudnovsky, Sov. J. Nucl. Phys. 30, 581 (1979); D. B. Kaplan and A. E. Nelson, Phys. Lett. B 175, 57 (1986); T. Muto and T. Tatsumi, Phys. Lett. B 283, 165 (1992); G. E. Brown, V. Thorsson, K. Kubodera, and M. Rho, Phys. Lett. B 291, 355 (1992); G. E. Brown, C.-H. Lee, M. Rho, and V. Thorsson, Nucl. Phys. A 567, 937 (1994); E. E. Kolomeitsev, D. N. Voskresensky, and B. Kämpfer, Nucl. Phys. A 588, 889 (1995); E. E. Kolomeitsev and D. N. Voskresensky, Phys. Rev. C 68, 015803 (2003).

    Google Scholar 

  30. D. N. Voskresensky, Phys. Lett. B 392, 262 (1997).

    Article  ADS  Google Scholar 

  31. E. E. Kolomeitsev and D. N. Voskresensky, Nucl. Phys. A 759, 373 (2005).

    Article  ADS  Google Scholar 

  32. D. N. Voskresensky and I. N. Mishustin, Pis’ma Zh. Eksp. Teor. Fiz. 28, 486 (1978) [JETP Lett. 28, 449 (1978)].

    Google Scholar 

  33. D. N. Voskresensky and I. N. Mishustin, Pis’ma Zh. Eksp. Teor. Fiz. 34, 317 (1981) [JETP Lett. 34, 303 (1981)]; Yad. Fiz. 35, 1139 (1982) [Sov. J. Nucl. Phys. 35, 667 (1982)].

    Google Scholar 

  34. A. M. Dyugaev, Pis’ma Zh. Eksp. Teor. Fiz. 35, 341 (1982) [JETP Lett. 35, 420 (1982)]; Zh. Eksp. Teor. Fiz. 83, 1005 (1982) [Sov. Phys. JETP 56, 567 (1982)]; Yad. Fiz. 38, 1131 (1983) [Sov. J. Nucl. Phys. 38, 680 (1983)].

    Google Scholar 

  35. D. N. Voskresensky and A. V. Senatorov, Yad. Fiz. 45, 657 (1987) [Sov. J. Nucl. Phys. 45, 411 (1987)].

    Google Scholar 

  36. D. N. Voskresensky, Yad. Fiz. 50, 1583 (1989) [Sov. J. Nucl. Phys. 50, 983 (1989)]; Yad. Fiz. 55, 368 (1992) [Sov. J. Nucl. Phys. 55, 202 (1992)]; Nucl. Phys. A 555, 293 (1993).

    Google Scholar 

  37. D. N. Voskresensky, D. Blaschke, G. Röpke, and H. Schulz, Int. J. Mod. Phys.E 4, 1 (1995).

    Article  ADS  Google Scholar 

  38. D. N. Voskresensky, Lect. Notes Phys. 578, 467 (2001) [astro-ph/0101514].

    Article  ADS  Google Scholar 

  39. R. Rapp, G. Chanfray, and J. Wambach, Nucl. Phys. A 617, 472 (1997).

    Article  ADS  Google Scholar 

  40. A. B. Migdal, Phys. Lett. 52, 172 (1974); A. B. Migdal, G. A. Sorokin, O. A. Markin, and I. N. Mishustin, Phys. Lett. B 65, 423 (1977).

    Google Scholar 

  41. A. B. Migdal, V. S. Popov, and D. N. Voskresensky, Zh. Eksp. Teor. Fiz. 72, 834 (1977) [Sov. Phys. JETP 45, 436 (1977)]; D. N. Voskresensky, G. A. Sorokin, and A. I. Chernoutsan, Pis’ma Zh. Eksp. Teor. Fiz. 25, 495 (1977) [JETP Lett. 25, 465 (1977)]; D. N. Voskresensky and A. I. Chernoutsan, Yad. Fiz. 27, 1411 (1978) [Sov. J. Nucl. Phys. 27, 742 (1978)].

    Google Scholar 

  42. E. Witten, Phys. Rev. D 30, 272 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  43. Ch. Alcock, E. Farhi, and A. Olinto, Astrophys. J. 310, 261 (1986).

    Article  ADS  Google Scholar 

  44. Madappa Prakash, I. Bombaci, Manju Prakash, et al., Phys. Rep. 280, 1 (1997).

    Article  ADS  Google Scholar 

  45. D. Blaschke, T. Kl ähn, and D. N. Voskresensky, Astrophys. J. 533, 406 (2000); H. Grigorian, D. Blaschke, and D. Voskresensky, Phys. Rev. C 71, 045801 (2005).

    Article  ADS  Google Scholar 

  46. D. N. Voskresensky and A. V. Senatorov, Zh. Eksp. Teor. Fiz. 90, 1505 (1986) [Sov. Phys. JETP 63, 885 (1986)].

    ADS  Google Scholar 

  47. J. Knoll and D. N. Voskresensky, Phys. Lett. B 351, 43 (1995); Ann. Phys. (N. Y.) 249, 532 (1996).

    Article  ADS  Google Scholar 

  48. E. E. Kolomeitsev and D. N. Voskresensky, Phys. Rev. C 60, 034610 (1999).

    Article  ADS  Google Scholar 

  49. J. N. Bahcall and R. A. Wolf, Phys. Rev. 140, B1445 (1965).

    Article  ADS  Google Scholar 

  50. S. Tsuruta and A. G.W. Cameron, Can. J. Phys. 43, 2056 (1965).

    Article  ADS  Google Scholar 

  51. B. L. Friman and O. V. Maxwell, Astrophys. J. 232, 541 (1979).

    Article  ADS  Google Scholar 

  52. O. V. Maxwell, Astrophys. J. 231, 201 (1979).

    Article  ADS  Google Scholar 

  53. S. Tsuruta, Phys. Rep. 56, 237 (1979).

    Article  ADS  Google Scholar 

  54. K. Nomoto and S. Tsuruta, Astrophys. J. Lett. 250, L19 (1981).

    Article  ADS  Google Scholar 

  55. Ch. Schaab, F. Weber, M. K. Weigel, and N. K. Glendenning, Nucl. Phys. A 605, 531 (1996).

    Article  ADS  Google Scholar 

  56. E. G. Flowers, P. G. Sutherland, and J. R. Bond, Phys. Rev. D 12, 315 (1975).

    Article  ADS  Google Scholar 

  57. J. M. Lattimer, C. J. Pethick, M. Prakash, and P. Haensel, Phys. Rev. Lett. 66, 2701 (1991).

    Article  ADS  Google Scholar 

  58. O. Maxwell, G. E. Brown, D. K. Campbell, et al., Astrophys. J. 216, 77 (1977).

    Article  ADS  Google Scholar 

  59. D. N. Voskresensky and A. V. Senatorov, Pis’ma Zh. Eksp. Teor. Fiz. 40, 395 (1984) [JETP Lett. 40, 1212 (1984)].

    ADS  Google Scholar 

  60. G. E. Brown, K. Kubodera, D. Page, and P. Pizzochero, Phys. Rev. D 37, 2042 (1988).

    Article  ADS  Google Scholar 

  61. T. Tatsumi, Prog. Theor. Phys. 80, 22 (1988).

    Article  ADS  Google Scholar 

  62. N. Iwamoto, Ann. Phys. (N. Y.) 141, 1 (1982).

    Article  ADS  Google Scholar 

  63. D. N. Voskresensky, V. A. Khodel, M. V. Zverev, and J.W. Clark, Astrophys. J. Lett. 533, L127 (2000).

    Article  ADS  Google Scholar 

  64. A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys. Rev. C 58, 1804 (1988).

    Article  ADS  Google Scholar 

  65. D. Blaschke, H. Grigorian, and D. N. Voskresensky, Astron. Astrophys. 424, 979 (2004).

    Article  ADS  Google Scholar 

  66. H. Grigorian and D. N. Voskresensky, Astron. Astrophys. 444, 913 (2005).

    Article  ADS  Google Scholar 

  67. T. Klähn et al., Phys. Rev. C 74, 035802 (2006).

    Article  ADS  Google Scholar 

  68. A. V. Senatorov and D. N. Voskresensky, Phys. Lett. B 184, 119 (1987).

    Article  ADS  Google Scholar 

  69. D. Blaschke, G. Röpke, H. Schulz, A. D. Sedrakian, and D. N. Voskresensky, Mon. Not. R. Astron. Soc. 273, 596 (1995).

    ADS  Google Scholar 

  70. C. Hanhart, D. R. Phillips, and S. Reddy, Phys. Lett. B 499, 9 (2001).

    Article  ADS  Google Scholar 

  71. A. Schwenk, P. Jaikumar, and Ch. Gale, Phys. Lett. B 584, 241 (2004).

    Article  ADS  Google Scholar 

  72. S. Reddy, Madappa Prakash, J. M. Lattimer, and J. A. Pons, Phys. Rev. C 59, 2888 (1999).

    Article  ADS  Google Scholar 

  73. S. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983), Ch. 11.

    Book  Google Scholar 

  74. V. A. Khodel, J. W. Clark, and M. V. Zverev, Phys. Rev. Lett. 87, 031103 (2001).

    Article  ADS  Google Scholar 

  75. D. G. Yakovlev, A. D. Kaminker, and K. P. Levenfish, Astron. Astrophys. 343, 650 (1999).

    ADS  Google Scholar 

  76. J. Wambach, T. L. Ainsworth, and D. Pines, Nucl. Phys. A 555, 128 (1993).

    Article  ADS  Google Scholar 

  77. R. Tamagaki, Prog. Theor. Phys. 44, 905 (1970).

    Article  ADS  Google Scholar 

  78. L. Amundsen and E. Ostgaard, Nucl. Phys. A 437, 487 (1985); Nucl. Phys. A 442, 163 (1985).

    ADS  Google Scholar 

  79. T. Takatsuka and R. Tamagaki, Prog. Theor. Phys. Suppl. 112, 27 (1993).

    Article  ADS  Google Scholar 

  80. V. A. Khodel, V. V. Khodel, and J. W. Clark, Nucl. Phys. A 598, 390 (1996).

    Article  ADS  Google Scholar 

  81. H.-J. Schulze, J. Cugnon, A. Lejeune, et al., Phys. Lett. B 375, 1 (1996).

    Article  ADS  Google Scholar 

  82. Ø. Elgarøy and M. Hjorth-Jensen, Phys. Rev. C 57, 1174 (1998).

    Article  ADS  Google Scholar 

  83. V. A. Khodel, Yad. Fiz. 64, 447 (2001) [Phys. At. Nucl. 64, 393 (2001)].

    Google Scholar 

  84. A. Schwenk and B. Friman, Phys. Rev. Lett. 92, 082501 (2004).

    Article  ADS  Google Scholar 

  85. V. A. Khodel, J. W. Clark, M. Takano, and M. V. Zverev, Phys. Rev. Lett. 93, 151101 (2004).

    Article  ADS  Google Scholar 

  86. K. Hebeler, A. Schwenk, and B. Friman, Phys. Lett. B 648, 176 (2007).

    Article  ADS  Google Scholar 

  87. W. Chen, B. Li, D. Wen, and L. Liu, Phys.Rev.C 77, 065804 (2008).

    Article  ADS  Google Scholar 

  88. A. Sedrakian and J. W. Clark, in Pairing in Fermionic Systems: Basic Concepts and Modern Applications, Vol. 8 of Series on Advances in Quantum Many-Body Theory, Ed. by A. Sedrakian, J. W. Clark, and M. Alford (World Sci., Singapore, 2006), p. 135 [nucl-th/0607028].

    Google Scholar 

  89. D. Page, M. Prakash, J. M. Lattimer, and A.W. Steiner, arXiv:1011.6142 [astro-ph.HE].

  90. D. G. Yakovlev, K. P. Levenfish, and Yu. A. Shibanov, Usp. Fiz. Nauk 169, 825 (1999) [Phys. Usp. 42, 737 (1999)].

    Article  Google Scholar 

  91. E. Flowers, M. Ruderman, and P. Sutherland, Astrophys. J. 205, 541 (1976).

    Article  ADS  Google Scholar 

  92. A. D. Kaminker, P. Haensel, and D. G. Yakovlev, Astron. Astrophys. 345, L14 (1999).

    ADS  Google Scholar 

  93. L. B. Leinson and A. Perez, Phys. Lett. B 638, 114 (2006).

    Article  ADS  Google Scholar 

  94. E. E. Kolomeitsev and D. N. Voskresensky, Phys. Rev. C 77, 065808 (2008).

    Article  ADS  Google Scholar 

  95. E. E. Kolomeitsev and D. N. Voskresensky, Phys. Rev. C 81, 065801 (2010).

    Article  ADS  Google Scholar 

  96. L. B. Leinson, Phys. Rev. C 81, 025501 (2010).

    Article  ADS  Google Scholar 

  97. A. Sedrakian, H. Muther, and P. Schuck, Phys. Rev. C 76, 055805 (2007); A. Sedrakian and J. Keller, Phys. Rev. C 81, 045806 (2010).

    Article  ADS  Google Scholar 

  98. A.W. Steiner and S. Reddy, Phys. Rev. C 79, 015802 (2009).

    Article  ADS  Google Scholar 

  99. J. Kundu and S. Reddy, Phys. Rev. C 70, 055803 (2004).

    Article  ADS  Google Scholar 

  100. D. N. Voskresensky, E. E. Kolomeitsev, and B. Kämpfer, Zh. Eksp. Teor. Fiz. 114, 385 (1998) [JETP 87, 211 (1998)].

    Google Scholar 

  101. L. B. Leinson, Phys. Lett. B 473, 318 (2000).

    Article  ADS  Google Scholar 

  102. S. Gupta, E. F. Brown, H. Schatz, et al., Astrophys. J. 662, 1188 (2007).

    Article  ADS  Google Scholar 

  103. Ch. Schaab, D. Voskresensky, A. D. Sedrakian, et al., Astron. Astrophys. 321, 591 (1997).

    ADS  Google Scholar 

  104. D. Page, Many Faces of Neutron Stars, Ed. by R. Buccheri, J. van Paradijs, and M. A. Alpar (Kluwer, Dordrecht, 1998), p. 538.

    Google Scholar 

  105. D. Page, J. M. Lattimer, M. Prakash, and A.W. Steiner, Astrophys. J. Suppl. 155, 623 (2004).

    Article  ADS  Google Scholar 

  106. Yu. B. Ivanov, J. Knoll, and D. N. Voskresensky, Nucl. Phys. A 657, 413 (1999).

    Article  ADS  Google Scholar 

  107. Yu. B. Ivanov, J. Knoll, and D. N. Voskresensky, Nucl. Phys. A 672, 313 (2000).

    Article  ADS  Google Scholar 

  108. J. Knoll, Yu. B. Ivanov, and D. N. Voskresensky, Ann. Phys. (N.Y.) 293, 126 (2001); Yu. B. Ivanov, J. Knoll, and D. N. Voskresensky, Yad. Fiz. 66, 1950 (2003) [Phys. At. Nucl. 66, 1902 (2003)].

    Article  ADS  MATH  Google Scholar 

  109. P. Danielewicz, Ann. Phys. (N. Y.) 152, 239, 305 (1984).

    Article  ADS  Google Scholar 

  110. E.M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon, Oxford, 1981).

    Google Scholar 

  111. N. N. Bogoliubov, Problems of Dynamical Theory in Statistical Physics (Gostekhisdat, Moscow, 1946) [in Russian]; N. N. Bogoliubov, J. Phys. (USSR) 10, 256 (1946).

    Google Scholar 

  112. Yu. L. Klimontovich, Statistical Physics (Nauka, Moscow, 1982; Gordon and Breach, New York, 1986).

    Google Scholar 

  113. A. V. Koshelkin, Phys. Lett. B 471, 202 (1999).

    Article  ADS  Google Scholar 

  114. Th. Bornath, D. Kremp, and M. Schlanges, Phys. Rev. E 60, 6382 (1999).

    Article  ADS  Google Scholar 

  115. G. Baym, Phys. Rev. 127, 1391 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  116. Yu. B. Ivanov and D. N. Voskresensky, Phys. At. Nucl. 72, 1168 (2009).

    Article  Google Scholar 

  117. T. Suzuki, H. Sakai, and T. Tatsumi, nuclth/9901097; A. Arima, W. Bentz, T. Suzuki, and T. Suzuki, Phys. Lett. B 499, 104 (2001).

    Google Scholar 

  118. C. L. Korpa, M. F. M. Lutz, and F. Riek, Phys. Rev. C 80, 024901 (2009).

    Article  ADS  Google Scholar 

  119. H. Toki, S. Sugimoto, and K. Ikeda, Prog. Theor. Phys. 108, 903 (2002); S. Sugimoto, K. Ikeda, and H. Toki, Phys. Rev. C 75, 014317 (2007); G. Ripka, Nucl. Phys. A 814, 33 (2008).

    Article  ADS  MATH  Google Scholar 

  120. M. Nakano et al., Int. J. Mod. Phys. E 10, 459 (2001).

    Article  ADS  Google Scholar 

  121. A. M. Dyugaev, Pis’ma Zh. Eksp. Teor. Fiz. 22, 181 (1975) [JETP Lett. 22, 83 (1975)].

    Google Scholar 

  122. T. E. O. Ericson and W. Weise, Pions and Nuclei (Clarendon, Oxford, 1988).

    Google Scholar 

  123. R. Fauser, Nucl. Phys. A 606, 479 (1996).

    Article  ADS  Google Scholar 

  124. A. Sedrakian and A. Dieperink, Phys. Lett. B 463, 145 (1999); Phys. Rev. D 62, 083002 (2000).

    Article  ADS  Google Scholar 

  125. R. H. Landau, Phys. Rev. C 27, 2191 (1983).

    Article  ADS  Google Scholar 

  126. C. M. Varma, Z. Nussinov, and W. van Saarloos, Phys. Rep. 361, 267 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  127. T. Fujita and K. F. Quader, Phys. Rev. B 36, 5152 (1987).

    Article  ADS  Google Scholar 

  128. J. Dabrowski and P. Haensel, Ann. Phys. (N.Y.) 97, 452 (1976).

    Article  ADS  Google Scholar 

  129. S.-O. Bäckman, O. Sjöberg, and A. D. Jackson, Nucl. Phys. A 321, 10 (1979).

    Article  ADS  Google Scholar 

  130. B. L. Friman and P. Haensel, Phys. Lett. B 98, 323 (1981).

    Article  ADS  Google Scholar 

  131. A. Sedrakian, Phys. Rev. C 68, 065805 (2003).

    Article  ADS  Google Scholar 

  132. S.-O. Bäckman, Nucl. Phys. A 120, 593 (1968).

    Article  ADS  Google Scholar 

  133. S.-O. Bäckman, C.-G. Källman, and O. Sjöberg, Phys. Lett. B 43, 263 (1973).

    Article  ADS  Google Scholar 

  134. S. Babu and G. E. Brown, Ann. Phys. (N.Y.) 78, 1 (1973).

    Article  ADS  Google Scholar 

  135. L. S. Celenza, W. S. Pong, and C.M. Shakin, Phys. Rev. C 25, 3115 (1982).

    Article  ADS  Google Scholar 

  136. V. A. Khodel and E. E. Saperstein, Phys. Rep. 92, 183 (1982).

    Article  ADS  Google Scholar 

  137. I. N. Borzov, S. V. Tolokonnikov, and S. A. Fayans, Yad. Fiz. 40, 1151 (1984) [Sov. J. Nucl. Phys. 40 (1984) 732]; E. E. Saperstein and S. V. Tolokonnikov, Pis’ma Zh. Eksp. Teor. Fiz. 68, 529 (1998) [JETP Lett. 68, 553 (1998)]; E. Kr ömer, S. V. Tolokonikov, S. A. Fayans, and D. Zawischa, Phys. Lett. B 363, 12 (1995).

    Google Scholar 

  138. V. A. Rodin, A. Faessler, F. Šimkovic, and P. Vogel, Nucl. Phys. A 766, 107 (2006); Nucl. Phys. A 793, 213(E) (2007).

    Article  ADS  Google Scholar 

  139. I. N. Borzov, S. A. Fayans, E. Krömer, and D. Zawischa, Z. Phys. A 355, 117 (1996).

    ADS  Google Scholar 

  140. I. N. Borzov, Phys. Rev. C 67, 025802 (2003).

    Article  ADS  Google Scholar 

  141. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).

    Article  ADS  Google Scholar 

  142. V. G. Vaks, V. M. Galitskii, and A. I. Larkin, Sov. Phys. JETP 14, 1177 (1962).

    Google Scholar 

  143. N. I. Pyatov and S. A. Fayans, Sov. J. Part. Nucl. 14, 401 (1983).

    Google Scholar 

  144. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957); P. C. Martin and J. S. Schwinger, Phys. Rev. 115, 1342 (1959).

    Article  MathSciNet  ADS  Google Scholar 

  145. H. A. Weldon, Phys. Rev. D 47, 594 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Kolomeitsev.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolomeitsev, E.E., Voskresensky, D.N. Superfluid nucleon matter in and out of equilibrium and weak interactions. Phys. Atom. Nuclei 74, 1316–1363 (2011). https://doi.org/10.1134/S1063778811090080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778811090080

Keywords

Navigation