Skip to main content
Log in

Quantum simulations of strongly coupled quark-gluon plasma

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A strongly coupled quark-gluon plasma (QGP) of heavy constituent quasiparticles is studied by a path-integral Monte-Carlo method. This approach is a quantum generalization of the model developed by B.A. Gelman, E.V. Shuryak, and I. Zahed. It is shown that this method is able to reproduce the QCD lattice equation of state and also yields valuable insight into the internal structure of the QGP. The results indicate that the QGP reveals liquid-like rather than gas-like properties. At temperatures just above the critical one it was found that bound quark-antiquark states still survive. These states are bound by effective string-like forces and turn out to be colorless. At the temperature as large as twice the critical one no bound states are observed. Quantum effects turned out to be of prime importance in these simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Migdal, Zh. Eksp. Teor. Fiz. 61, 2210 (1971) [Sov. Phys. JETP 34, 1184 (1972)]; Phys. Lett. B 52, 172 (1974).

    Google Scholar 

  2. D. Blaschke, H. Grigorian, and D. N. Voskresensky, Astron. Astrophys. 424, 979 (2004).

    Article  ADS  Google Scholar 

  3. E. Shuryak, Prog. Part. Nucl. Phys. 62, 48 (2009).

    Article  ADS  Google Scholar 

  4. A. Bazavov et al., Phys. Rev. D 80, 014504 (2009).

    Article  ADS  Google Scholar 

  5. Z. Fodor and S. D. Katz, arXiv:0908.3341 [hep-ph].

  6. F. Csikor, G. I. Egri, Z. Fodor, et al., J. High Energy Phys. 0405, 046 (2004).

    Article  ADS  Google Scholar 

  7. D. F. Litim and C. Manuel, Phys. Rev. Lett. 82, 4981 (1999); Nucl. Phys. B 562, 237 (1999); Phys. Rev. D 61, 125004 (2000); Phys. Rep. 364, 451 (2002).

    Article  ADS  Google Scholar 

  8. M. Hofmann, M. Bleicher, S. Scherer, et al., Phys. Lett. B 478, 161 (2000).

    Article  ADS  Google Scholar 

  9. B.A. Gelman, E. V. Shuryak, and I. Zahed, Phys.Rev. C 74, 044908, 044909 (2006).

    Article  ADS  Google Scholar 

  10. S. Cho and I. Zahed, Phys. Rev. C 79, 044911 (2009); Phys. Rev. C 80, 014906 (2009); Phys. Rev. C 82, 044905, 054907 (2010); arXiv:0910.1548 [nucl-th]; K. Dusling and I. Zahed, Nucl. Phys. A 833, 172 (2010).

    Article  ADS  Google Scholar 

  11. M. H. Thoma, IEEE Trans. Plasma Sci. 32, 738 (2004).

    Article  ADS  Google Scholar 

  12. A. Filinov, M. Bonitz, and W. Ebeling, J. Phys. A 36, 5957 (2003).

    Article  ADS  MATH  Google Scholar 

  13. G. Kelbg, Ann. Phys. (Leipzig) 12, 219 (1962); Ann. Phys. (Leipzig) 13, 354 (1963).

    MathSciNet  Google Scholar 

  14. K. Dusling and C. Young, arXiv:0707.2068 [nucl-th].

  15. A. Filinov, V. Golubnychiy, M. Bonitz, et al., Phys. Rev. E 70, 046411 (2004).

    Article  ADS  Google Scholar 

  16. M. Bonitz, D. Semkat, A. Filinov, et al., J. Phys.A 36, 5921 (2003); M. Bonitz, P. Ludwig, H. Baumgartner, et al., Phys. Plasma 15, 055704 (2008).

    Article  ADS  Google Scholar 

  17. V. S. Filinov, M. Bonitz, W. Ebeling, and V. E. Fortov, Plasma Phys. Control. Fusion 43, 743 (2001).

    Article  ADS  Google Scholar 

  18. V. S. Filinov, M. Bonitz, and V. E. Fortov, JETP Lett. 72, 245 (2000).

    Article  ADS  Google Scholar 

  19. M. Bonitz, V. S. Filinov, V. E. Fortov., et al., Phys. Rev. Lett. 95, 235006 (2005).

    Article  ADS  Google Scholar 

  20. V. S. Filinov, M. Bonitz, P. R. Levashov, et al., J. Phys. A 36, 6069 (2003).

    Article  ADS  MATH  Google Scholar 

  21. M. Bonitz, V. S. Filinov, V. E. Fortov, et al., J. Phys. A 39, 4717 (2006).

    Article  ADS  Google Scholar 

  22. V. S. Filinov, H. Fehske, M. Bonitz, et al., Phys. Rev. E 75, 036401 (2007).

    Article  ADS  Google Scholar 

  23. V. S. Filinov, M. Bonitz, Yu. B. Ivanov, et al., Contrib. Plasma Phys. 49, 536 (2009).

    Article  Google Scholar 

  24. V. S. Filinov, M. Bonitz, Yu. B. Ivanov, et al., Contrib. Plasma Phys. 51, 322 (211).

    Google Scholar 

  25. P. Petreczky, F. Karsch, E. Laermann, et al., Nucl. Phys. B Proc. Suppl. 106, 513 (2002).

    Article  ADS  Google Scholar 

  26. J. Liao and E. V. Shuryak, Phys. Rev. D 73, 014509 (2006).

    Article  ADS  Google Scholar 

  27. S. K. Wong, Nuovo Cimento A 65, 689 (1970).

    Article  ADS  Google Scholar 

  28. J. L. Richardson, Phys. Lett. B 82, 272 (1979).

    Article  ADS  Google Scholar 

  29. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    MATH  Google Scholar 

  30. V. M. Zamalin, G. E. Norman, and V. S. Filinov, TheMonte CarloMethod in Statistical Thermodynamics (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  31. A. Peshier, B. Kampfer, and O. P. Pavlenko, Phys. Rev. D 54, 2399 (1996).

    Article  ADS  Google Scholar 

  32. Yu. B. Ivanov, V. V. Skokov, and V. D. Toneev, Phys. Rev. D 71, 014005 (2005).

    Article  ADS  Google Scholar 

  33. F. Karsch and M. Kitazawa, Phys. Rev. D 80, 056001 (2009).

    Article  ADS  Google Scholar 

  34. G. M. Prosperi, M. Raciti, and C. Simolo, Prog. Part. Nucl. Phys. 58, 387 (2007).

    Article  ADS  Google Scholar 

  35. A. V. Filinov, V. S. Filinov, Yu. E. Lozovik, and M. Bonitz, Introduction to Computational Methods for Many-Body Physics, Ed. by M. Bonitz and D. Semkat (Rinton Press, Princeton, 2006).

    Google Scholar 

  36. V. I. Yukalov and E. P. Yukalova, Physica A 243, 382 (1997); Fiz. Elem. Chastits At. Yadra 28, 89 (1997) [Phys. Part. Nucl. 28, 37 (1997)].

    Article  ADS  Google Scholar 

  37. E. V. Shuryak and I. Zahed, Phys. Rev. C 70, 021901 (2004); Phys. Rev. D 70, 054507 (2004).

    Article  ADS  Google Scholar 

  38. G. E. Brown, B. A. Gelman, and M. Rho, nuclth/ 0505037.

  39. M. Asakawa, T. Hatsuda, and Y. Nakahara, Prog. Part. Nucl. Phys. 46, 459 (2001); Nucl. Phys. A 715, 863 (2003); M. Asakawa and T. Hatsuda, Phys. Rev. Lett. 92, 012001 (2004).

    Article  ADS  Google Scholar 

  40. S. Datta, F. Karsch, P. Petreczky, and I. Wetzorke, Phys. Rev. D 69, 094507 (2004).

    Article  ADS  Google Scholar 

  41. V. Koch, A. Majumder, and J. Randrup, Phys. Rev. Lett. 95, 182301 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Filinov.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filinov, V.S., Ivanov, Y.B., Bonitz, M. et al. Quantum simulations of strongly coupled quark-gluon plasma. Phys. Atom. Nuclei 74, 1364–1374 (2011). https://doi.org/10.1134/S1063778811090043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778811090043

Keywords

Navigation