Skip to main content
Log in

Q kink of the nonlinear O(3) σ model involving an explicitly broken symmetry

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The (1 + 1)-dimensional nonlinear O(3) σ model involving an explicitly broken symmetry is considered. Sphalerons are known to exist in this model. These sphalerons are of a topological origin and are embedded kinks of the sine-Gordon model. In the case of a compact spatial manifold S 1, sine-Gordon multikinks exist in the model. It is shown that the model admits a nonstatic generalization of the sine-Gordon kink/multikink, Q kink/multikink. Explicit expressions are obtained for the dependence of the Q kink energy and charge on the phase frequency of rotation. The Q kink is studied for stability, and expressions are obtained for the eigenfunctions and eigenfrequencies of the operator of quadratic fluctuations. It is shown that the Q kink is unstable over the entire admissible frequency range ω ∈ [−1, 1]. The one-loop quantum correction to the static-kink mass is calculated, and the Q-kink zero mode is quantized. It is shown that, in a general static case, the field equations of the model are integrable in quadratures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. Derrick, J.Math. Phys. 5, 1252 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  2. E. R. C. Abraham and P. K. Townsend, Phys. Lett. B 291, 85 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  3. E. R. C. Abraham and P. K. Townsend, Phys. Lett. B 295, 225 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Arai, M. Naganuma, M. Nitta, and N. Sakai, Nucl. Phys. B 652, 35 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. N. Dorey, J. High Energy Phys. 9811, 005 (1998).

    ADS  Google Scholar 

  6. R. A. Leese, Nucl. Phys. B 366, 283 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Alonso-Izquierdo, M. A. Gonzales Leon, and J. Mateos Guilarte, Phys. Rev. Lett. 101, 131602 (2008).

    Article  ADS  Google Scholar 

  8. A. Alonso-Izquierdo, M. A. Gonzales Leon, and J. Mateos Guilarte, Phys. Rev. D 79, 125003 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  9. E. Mottola and A. Wipf, Phys. Rev. D 39, 588 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  10. B.M.A.G. Piette, B. J. Schroers, and W. J. Zakrewski, Z. Phys. C 65, 165 (1995).

    Article  ADS  Google Scholar 

  11. B.M.A.G. Piette, B. J. Schroers, and W. J. Zakrewski, Nucl. Phys. B 439, 205 (1995).

    Article  ADS  MATH  Google Scholar 

  12. A. N. Vasiliev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics (PIYad. Fiz., St.-Petersburg, 1998; Chapman Hall, CRC, Boca Raton, 2004).

    Google Scholar 

  13. N. S. Manton and P. Sutcliffe, Topological Solitons (Cambridge Univ., Cambridge, 2004).

    Book  MATH  Google Scholar 

  14. N. Manton, Phys. Rev. D 28, 2019 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  15. P. Forgacs and Z. Horvath, Phys. Lett. B 138, 397 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  16. R. Radzharaman, An Introduction to Solitons and Instantons in Quantum Field Theory (Elsevier, North-Holland, 1982; Mir, Moscow, 1985).

    Google Scholar 

  17. V. A. Lenskii, V. A. Gani, and A. E. Kudryavtsev, Zh. Eksp. Teor. Fiz. 120, 778 (2001) [J. Exp. Theor. Phys. 93, 677 (2001)].

    Google Scholar 

  18. L. Ya. Tslaf, Variational Calculus and Integral Equations (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  19. S. Yu. Slavyanov and W. Lay, Special Functions (Oxford Univ., New York, 2000).

    MATH  Google Scholar 

  20. R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D 10, 4114 (1974).

    Article  ADS  Google Scholar 

  21. R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D 10, 4130 (1974).

    Article  ADS  Google Scholar 

  22. K. Cahill, Phys. Lett. B 53, 174 (1974).

    Article  ADS  Google Scholar 

  23. K. Cahill, A. Comtet, and R. J. Glauber, Phys. Lett. B 64, 283 (1976).

    Article  ADS  Google Scholar 

  24. A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 (1975).

    ADS  Google Scholar 

  25. R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D 11, 3424 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  26. R. Rajaraman and E. J. Weinberg, Phys. Rev. D 11, 2950 (1975).

    Article  ADS  Google Scholar 

  27. Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. Stegun (Nation. Bureau of Standards, New York, 1964; Moscow, Nauka, 1979).

    MATH  Google Scholar 

  28. J. K. Perring and T. H. R. Skyrme, Nucl. Phys. 31, 550 (1962).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Loginov.

Additional information

Original Russian Text © A.Yu. Loginov, 2011, published in Yadernaya Fizika, 2011, Vol. 74, No. 5, pp. 766–780.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loginov, A.Y. Q kink of the nonlinear O(3) σ model involving an explicitly broken symmetry. Phys. Atom. Nuclei 74, 740–754 (2011). https://doi.org/10.1134/S1063778811040107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778811040107

Keywords

Navigation