Experiment double beta decay: Historical review of 75 years of research

Abstract

The main achievements during 75 years of research on double beta decay have been reviewed. The existing experimental data have been presented and the capabilities of the next-generation detectors have been demonstrated.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M. Goeppert-Mayer, Phys. Rev. 48, 512 (1935).

    ADS  MATH  Google Scholar 

  2. 2.

    E. Majorana, Nuovo Cimento 14, 171 (1937).

    MATH  Google Scholar 

  3. 3.

    G. Racah, Nuovo Cimento 14, 322 (1937).

    Google Scholar 

  4. 4.

    B.M. Pontekorvo, Priroda, No. 1, 43 (1983).

  5. 5.

    W. H. Furry, Phys. Rev. 54, 56 (1938).

    ADS  Google Scholar 

  6. 6.

    W. H. Furry, Phys. Rev. 56, 1184 (1939).

    ADS  MATH  Google Scholar 

  7. 7.

    E. L. Fireman, Phys. Rev. 74, 1238 (1948).

    Google Scholar 

  8. 8.

    E. L. Fireman, Phys. Rev. 75, 323 (1949).

    ADS  Google Scholar 

  9. 9.

    J. S. Lowson, Phys. Rev. 81, 299 (1951).

    Google Scholar 

  10. 10.

    M. I. Kalkstein and W. F. S. Libby, Phys. Rev. 85, 368 (1952).

    ADS  Google Scholar 

  11. 11.

    R. W. Pearce and E. R. Darby, Phys. Rev. 86, 1049 (1952).

    ADS  Google Scholar 

  12. 12.

    E. L. Fireman, Phys. Rev. 86, 451 (1952).

    ADS  Google Scholar 

  13. 13.

    J. A. McCarthy, Phys. Rev. 90, 853 (1953).

    ADS  Google Scholar 

  14. 14.

    J. H. Fremlin and M. C. Walters, Proc. Phys. Soc. London, Sect. A 65, 911 (1952).

    ADS  Google Scholar 

  15. 15.

    J. A. McCarthy, Phys. Rev. 97, 1234 (1955).

    ADS  Google Scholar 

  16. 16.

    A. Berthelot et al., Compt. Rend. 236, 1769 (1953).

    Google Scholar 

  17. 17.

    R. G. Winter, Phys. Rev. 99, 88 (1955).

    ADS  Google Scholar 

  18. 18.

    E. N. Dobrokhotov, V. R. Lazarenko, and S. Yu. Luk’yanov, Dokl. Akad. Nauk SSSR 110, 966 (1956) [Sov. Phys. Dokl. 1, 600 (1956)].

    Google Scholar 

  19. 19.

    M. G. Inghram, and J. H. Reynolds, Phys. Rev. 76, 1265 (1949).

    ADS  Google Scholar 

  20. 20.

    M. G. Inghram, and J. H. Reynolds, Phys. Rev. 78, 822 (1950).

    ADS  Google Scholar 

  21. 21.

    C. B. Levine, A. Griorso, and G. T. Seaborg, Phys. Rev. 77, 296 (1950).

    ADS  Google Scholar 

  22. 22.

    E. Greuling and R. C. Whitten, Ann. Phys (N.Y.) 11, 510 (1960).

    ADS  MathSciNet  Google Scholar 

  23. 23.

    E. der Mateosian and M. Goldhaber, Phys. Rev. 146, 810 (1966).

    ADS  Google Scholar 

  24. 24.

    E. Fiorini et al., Phys. Lett. B 25, 602 (1967).

    ADS  Google Scholar 

  25. 25.

    E. Fiorini et al., Nuovo Cimento A 13, 747 (1973).

    ADS  Google Scholar 

  26. 26.

    R. K. Bardin, P. J. Gollon, J. D. Ullman, and C. S. Wu, Phys. Lett. B 26, 112 (1967).

    ADS  Google Scholar 

  27. 27.

    R. K. Bardin, P. J. Gollon, J. D. Ullman, and C. S. Wu, Nucl. Phys. A 158, 337 (1970).

    ADS  Google Scholar 

  28. 28.

    B. T. Cleveland, W. R. Leo, C. S. Wu, et al., Phys. Rev. Lett. 35, 757 (1975).

    ADS  Google Scholar 

  29. 29.

    T. Kirsten, W. Gentner, and O. A. Schaeffer, Z. Phys. 202, 273 (1967).

    ADS  Google Scholar 

  30. 30.

    E. W. Hennecke, O. K. Manuel, and D. D. Sabu, Phys. Rev. C 11, 1378 (1975).

    ADS  Google Scholar 

  31. 31.

    V. A. Lubimov et al., Phys. Lett. B 94, 266 (1980).

    ADS  Google Scholar 

  32. 32.

    Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, Phys. Lett. B 98, 265 (1981).

    ADS  Google Scholar 

  33. 33.

    C. S. Aulakh and R. N. Mohapatra, Phys. Lett. B 119, 136 (1982).

    ADS  Google Scholar 

  34. 34.

    G. B. Gelmini and M. Roncadelli, Phys. Lett. B 99, 411 (1981).

    ADS  Google Scholar 

  35. 35.

    H. M. Georgi, S. L. Glashow, and S. Nussinov, Nucl. Phys. B 193, 297 (1981).

    ADS  Google Scholar 

  36. 36.

    J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 2951 (1982).

    ADS  Google Scholar 

  37. 37.

    M. Doi, T. Kotani, and E. Takasugi, Prog. Theor. Phys. Suppl. 83, 1 (1985).

    ADS  Google Scholar 

  38. 38.

    P. Vogel and M. R. Zirnbauer, Phys. Rev. Lett. 57, 3148 (1986).

    ADS  Google Scholar 

  39. 39.

    D. O. Caldwell, J. Phys. G 17, S137 (1991).

    ADS  Google Scholar 

  40. 40.

    A. A. Vasenko et al., in Proceedings of the 2nd International Symposium on Underground Physics’87, Baksan Valley, USSR, Aug. 17–19, 1987 (Nauka, Moscow, 1988), p. 288.

    Google Scholar 

  41. 41.

    A. A. Vasenko et al., Mod. Phys. Lett. A 5, 1299 (1990).

    ADS  Google Scholar 

  42. 42.

    H. V. Klapdor-Kleingrothaus et al., Eur. Phys. J. A 12, 147 (2001).

    ADS  Google Scholar 

  43. 43.

    C. E. Aalseth et al., Phys. Rev. C 65, 09007 (2002).

    Google Scholar 

  44. 44.

    R. Luescher et al., Phys. Lett. B 434, 407 (1998).

    ADS  Google Scholar 

  45. 45.

    E. Fiorini and T. O. Niinikoski, Nucl. Instrum. Methods Phys. Res. 224, 83 (1984).

    ADS  Google Scholar 

  46. 46.

    S. R. Elliott, A. A. Hahn, and M. K. Moe, Phys. Rev. Lett. 59, 2020 (1987).

    ADS  Google Scholar 

  47. 47.

    H. Ejiri et al., Phys. Lett. B 258, 17 (1991).

    ADS  Google Scholar 

  48. 48.

    S. R. Elliott, M. K. Moe, M. A. Nelson, and M. A. Vient, J. Phys. G 17, S145 (1991).

    ADS  Google Scholar 

  49. 49.

    H. Ejiri et al., J. Phys. Soc. Jpn. 64, 339 (1995).

    ADS  Google Scholar 

  50. 50.

    R. Arnold et al., JETP Lett. 61, 170 (1995).

    ADS  Google Scholar 

  51. 51.

    F. A. Danevich et al., Phys. Lett. B 344, 72 (1995).

    ADS  Google Scholar 

  52. 52.

    S. R. Elliott et al., Phys. Rev. C 46, 1535 (1992).

    ADS  Google Scholar 

  53. 53.

    A. De Silva et al., Phys. Rev. C 56, 2451 (1997).

    ADS  Google Scholar 

  54. 54.

    A. Balysh et al., Phys. Rev. Lett. 77, 5186 (1996).

    ADS  Google Scholar 

  55. 55.

    D. Dassié et al., Phys. Rev. D 51, 2090 (1995).

    ADS  Google Scholar 

  56. 56.

    R. Arnold et al., Z. Phys. C 72, 239 (1996).

    ADS  Google Scholar 

  57. 57.

    R. Arnold et al., Nucl. Phys. A 636, 209 (1998).

    Google Scholar 

  58. 58.

    R. Arnold et al., Nucl. Phys. A 658, 299 (1999).

    Google Scholar 

  59. 59.

    A. L. Turkevich, T. E. Economou, and G. A. Cowan, Phys. Rev. Lett. 67, 3211 (1991).

    ADS  Google Scholar 

  60. 60.

    A. S. Barabash et al., Phys. Lett. B 345, 408 (1995).

    ADS  Google Scholar 

  61. 61.

    T. Kirsten et al., in Proceedings of the International Symposium on Nuclear Beta Decay and Neutrino (Osaka’86) (World Sci., Singapore, 1986), p. 81.

    Google Scholar 

  62. 62.

    T. Bernatowicz et al., Phys. Rev. C 47, 806 (1993).

    ADS  Google Scholar 

  63. 63.

    O. K. Manuel, in Proceedings of the International Symposium on Nuclear Beta Decay and Neutrino (Osaka’86) (World Sci., Singapore, 1986), p. 71.

    Google Scholar 

  64. 64.

    N. Takaoka, and K. Ogata, Z. Naturforsch. A 21, 84 (1966).

    ADS  Google Scholar 

  65. 65.

    N. Takaoka, Y. Motomura, and K. Nagano, Phys. Rev. C 53, 1557 (1996).

    ADS  Google Scholar 

  66. 66.

    A. S. Barabash, Astrophys. Space Sci. 283, 607 (2003).

    ADS  Google Scholar 

  67. 67.

    A. Kawashima, K. Takahashi, and A. Masuda, Phys. Rev. C 47, 2452 (1993).

    ADS  Google Scholar 

  68. 68.

    H. V. Klapdor-Kleingrothaus et al., Mod. Phys. Lett. A 16, 2409 (2001).

    ADS  Google Scholar 

  69. 69.

    A.M. Bakalyarov et al., Phys. Part. Nucl. Lett. 2, 77 (2005); hep-ex/0309016.

    Google Scholar 

  70. 70.

    H. V. Klapdor-Kleingrothaus, I. V. Krivosheina, A. Dietz, and O. Chkvorets, Phys. Lett. B 586, 198 (2004).

    ADS  Google Scholar 

  71. 71.

    H. V. Klapdor-Kleingrothaus and I. V. Krivosheina, Mod. Phys. Lett. A 21, 1547 (2006).

    ADS  Google Scholar 

  72. 72.

    C. E. Aalseth et al., Mod. Phys. Lett. A 17, 1475 (2002).

    ADS  Google Scholar 

  73. 73.

    Yu. G. Zdesenko, F. A. Danevich, and V. I. Treyak, Phys. Lett. B 546, 206 (2002).

    ADS  Google Scholar 

  74. 74.

    A. Strumia and F. Vissani, Nucl. Phys. B 726, 294 (2005).

    ADS  Google Scholar 

  75. 75.

    O. Chkvorets, arXiv:0812.1206 [hep-ex].

  76. 76.

    C. Arnaboldi et al., Phys. Rev. Lett. 95, 142501 (2005).

    ADS  Google Scholar 

  77. 77.

    C. Arnaboldi et al., Phys. Rev. C 78, 035502 (2008).

    ADS  Google Scholar 

  78. 78.

    R. Arnold et al., Nucl. Instrum. Methods A 536, 79 (2005).

    Google Scholar 

  79. 79.

    R. Arnold et al., Phys. Rev. Lett. 95, 182302 (2005).

    ADS  Google Scholar 

  80. 80.

    R. Arnold et al., Nucl. Phys. A 765, 483 (2006).

    ADS  Google Scholar 

  81. 81.

    R. Arnold et al., Nucl. Phys. A 781, 209 (2007).

    ADS  Google Scholar 

  82. 82.

    J. Argyriades et al., Phys. Rev. C 80, 032501(R) (2009).

    ADS  Google Scholar 

  83. 83.

    A. S. Barabash and V. B. Brudanin, arXiv:1002.2862 [nucl-ex].

  84. 84.

    J. Argyriades et al., arXiv:0906.2694 [nucl-ex].

  85. 85.

    A. S. Barabash, Yad. Fiz. 73, 166 (2010) [Phys. At. Nucl. 73, 162 (2010)]; arXiv:0807.2948 [hep-ex].

    Google Scholar 

  86. 86.

    M. E. Wieser and J. R. De Laeter, Phys. Rev. C 64, 024308 (2001).

    ADS  Google Scholar 

  87. 87.

    H. Hidaka, C. V. Ly, and K. Suzuki, Phys. Rev. C 70, 025501 (2004).

    ADS  Google Scholar 

  88. 88.

    A. P. Meshik, C.M. Hohenberg, O.V. Pravdivtseva, and Y.S. Kapusta, Phys. Rev. C 64, 035205 (2001).

    ADS  Google Scholar 

  89. 89.

    A. P. Meshik, C.M. Hohenberg, O.V. Pravdivtseva, et al., Nucl. Phys. A 809, 275 (2008).

    ADS  Google Scholar 

  90. 90.

    H. V. Tomas et al., Phys. Rev. C 78, 054606 (2008).

    ADS  Google Scholar 

  91. 91.

    A. S. Barabash, Phys. Rev. C 81, 035501 (2010).

    ADS  Google Scholar 

  92. 92.

    M. Kortelainen and J. Suhonen, Phys. Rev. C 75, 051303(R) (2007).

    ADS  Google Scholar 

  93. 93.

    M. Kortelainen and J. Suhonen, Phys. Rev. C 76, 024315 (2007).

    ADS  Google Scholar 

  94. 94.

    F. Simkovic et al., Phys. Rev. C 77, 045503 (2008).

    ADS  Google Scholar 

  95. 95.

    E. Caurier et al., Phys. Rev. Lett. 100, 052503 (2008).

    ADS  Google Scholar 

  96. 96.

    J. Barea and F. Iachello, Phys. Rev. C 79, 044301 (2009).

    ADS  Google Scholar 

  97. 97.

    K. Chaturvedi et al., Phys. Rev. C 78, 054302 (2008).

    ADS  MathSciNet  Google Scholar 

  98. 98.

    J. Suhonen and O. Civitarese, Phys. Rep. 300, 123 (1998).

    ADS  Google Scholar 

  99. 99.

    S. Umehara et al., Phys. Rev. C 78, 058501 (2008).

    ADS  Google Scholar 

  100. 100.

    F. A. Danevich et al., Phys. Rev. C 68, 035501 (2003).

    ADS  Google Scholar 

  101. 101.

    R. Bernabei et al., Phys. Lett. B 546, 23 (2002).

    ADS  Google Scholar 

  102. 102.

    A. S. Barabash, Phys. Lett. B 216, 257 (1989).

    ADS  Google Scholar 

  103. 103.

    C. Arnaboldi et al., Phys. Lett. B 557, 167 (2003).

    ADS  Google Scholar 

  104. 104.

    C. Arnaboldi et al., Nucl. Instrum. Methods Phys. Res. A 518, 775 (2004).

    ADS  Google Scholar 

  105. 105.

    I. C. Bandac, J. Phys. Conf. Ser. 110, 082001 (2008).

    ADS  Google Scholar 

  106. 106.

    I. Abt et al., hep-ex/0404039.

  107. 107.

    J. Janicsko-Csathy, Nucl. Phys. B Proc. Suppl. 188, 68 (2009).

    ADS  Google Scholar 

  108. 108.

    Majorana White Paper, nucl-ex/0311013.

  109. 109.

    V. E. Guiseppe, arXiv:0811.2446 [nucl-ex].

  110. 110.

    M. Danilov et al., Phys. Lett. B 480, 12 (2000).

    ADS  Google Scholar 

  111. 111.

    R. Gornea, J. Phys. Conf. Ser. 179, 012004 (2009).

    ADS  Google Scholar 

  112. 112.

    A. S. Barabash, Czech. J. Phys. 52, 575 (2002).

    ADS  Google Scholar 

  113. 113.

    A. S. Barabash, Yad. Fiz. 67, 2008 (2004) [Phys. At. Nucl. 67, 1984 (2004)].

    Google Scholar 

  114. 114.

    E. Chauveau, AIP Conf. Proc. 1180, 26 (2009).

    ADS  Google Scholar 

  115. 115.

    K. Nakamura, Report at International Conference Neutrino’2010, Athens, Greece, 13–19 June, 2010.

  116. 116.

    L. A. Sliv, Zh. Eksp. Teor. Fiz. 20, 1035 (1950).

    Google Scholar 

  117. 117.

    Ya. B. Zeldovich, S. Yu. Luk’yanov, and Ya. A. Smorodinsky, Usp. Fiz. Nauk 54, 361 (1954).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. S. Barabash.

Additional information

Original Russian Text © A.S. Barabash, 2011, published in Yadernaya Fizika, 2011, Vol. 74, No. 4, pp. 627–638.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barabash, A.S. Experiment double beta decay: Historical review of 75 years of research. Phys. Atom. Nuclei 74, 603–613 (2011). https://doi.org/10.1134/S1063778811030070

Download citation

Keywords

  • Atomic Nucleus
  • Neutrino Mass
  • Daughter Nucleus
  • Majorana Neutrino
  • Time Projection Chamber