Advertisement

Physics of Atomic Nuclei

, Volume 74, Issue 4, pp 603–613 | Cite as

Experiment double beta decay: Historical review of 75 years of research

  • A. S. Barabash
Elementary Particles and Fields Experiment

Abstract

The main achievements during 75 years of research on double beta decay have been reviewed. The existing experimental data have been presented and the capabilities of the next-generation detectors have been demonstrated.

Keywords

Atomic Nucleus Neutrino Mass Daughter Nucleus Majorana Neutrino Time Projection Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Goeppert-Mayer, Phys. Rev. 48, 512 (1935).ADSzbMATHGoogle Scholar
  2. 2.
    E. Majorana, Nuovo Cimento 14, 171 (1937).zbMATHGoogle Scholar
  3. 3.
    G. Racah, Nuovo Cimento 14, 322 (1937).Google Scholar
  4. 4.
    B.M. Pontekorvo, Priroda, No. 1, 43 (1983).Google Scholar
  5. 5.
    W. H. Furry, Phys. Rev. 54, 56 (1938).ADSGoogle Scholar
  6. 6.
    W. H. Furry, Phys. Rev. 56, 1184 (1939).ADSzbMATHGoogle Scholar
  7. 7.
    E. L. Fireman, Phys. Rev. 74, 1238 (1948).Google Scholar
  8. 8.
    E. L. Fireman, Phys. Rev. 75, 323 (1949).ADSGoogle Scholar
  9. 9.
    J. S. Lowson, Phys. Rev. 81, 299 (1951).Google Scholar
  10. 10.
    M. I. Kalkstein and W. F. S. Libby, Phys. Rev. 85, 368 (1952).ADSGoogle Scholar
  11. 11.
    R. W. Pearce and E. R. Darby, Phys. Rev. 86, 1049 (1952).ADSGoogle Scholar
  12. 12.
    E. L. Fireman, Phys. Rev. 86, 451 (1952).ADSGoogle Scholar
  13. 13.
    J. A. McCarthy, Phys. Rev. 90, 853 (1953).ADSGoogle Scholar
  14. 14.
    J. H. Fremlin and M. C. Walters, Proc. Phys. Soc. London, Sect. A 65, 911 (1952).ADSGoogle Scholar
  15. 15.
    J. A. McCarthy, Phys. Rev. 97, 1234 (1955).ADSGoogle Scholar
  16. 16.
    A. Berthelot et al., Compt. Rend. 236, 1769 (1953).Google Scholar
  17. 17.
    R. G. Winter, Phys. Rev. 99, 88 (1955).ADSGoogle Scholar
  18. 18.
    E. N. Dobrokhotov, V. R. Lazarenko, and S. Yu. Luk’yanov, Dokl. Akad. Nauk SSSR 110, 966 (1956) [Sov. Phys. Dokl. 1, 600 (1956)].Google Scholar
  19. 19.
    M. G. Inghram, and J. H. Reynolds, Phys. Rev. 76, 1265 (1949).ADSGoogle Scholar
  20. 20.
    M. G. Inghram, and J. H. Reynolds, Phys. Rev. 78, 822 (1950).ADSGoogle Scholar
  21. 21.
    C. B. Levine, A. Griorso, and G. T. Seaborg, Phys. Rev. 77, 296 (1950).ADSGoogle Scholar
  22. 22.
    E. Greuling and R. C. Whitten, Ann. Phys (N.Y.) 11, 510 (1960).ADSMathSciNetGoogle Scholar
  23. 23.
    E. der Mateosian and M. Goldhaber, Phys. Rev. 146, 810 (1966).ADSGoogle Scholar
  24. 24.
    E. Fiorini et al., Phys. Lett. B 25, 602 (1967).ADSGoogle Scholar
  25. 25.
    E. Fiorini et al., Nuovo Cimento A 13, 747 (1973).ADSGoogle Scholar
  26. 26.
    R. K. Bardin, P. J. Gollon, J. D. Ullman, and C. S. Wu, Phys. Lett. B 26, 112 (1967).ADSGoogle Scholar
  27. 27.
    R. K. Bardin, P. J. Gollon, J. D. Ullman, and C. S. Wu, Nucl. Phys. A 158, 337 (1970).ADSGoogle Scholar
  28. 28.
    B. T. Cleveland, W. R. Leo, C. S. Wu, et al., Phys. Rev. Lett. 35, 757 (1975).ADSGoogle Scholar
  29. 29.
    T. Kirsten, W. Gentner, and O. A. Schaeffer, Z. Phys. 202, 273 (1967).ADSGoogle Scholar
  30. 30.
    E. W. Hennecke, O. K. Manuel, and D. D. Sabu, Phys. Rev. C 11, 1378 (1975).ADSGoogle Scholar
  31. 31.
    V. A. Lubimov et al., Phys. Lett. B 94, 266 (1980).ADSGoogle Scholar
  32. 32.
    Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, Phys. Lett. B 98, 265 (1981).ADSGoogle Scholar
  33. 33.
    C. S. Aulakh and R. N. Mohapatra, Phys. Lett. B 119, 136 (1982).ADSGoogle Scholar
  34. 34.
    G. B. Gelmini and M. Roncadelli, Phys. Lett. B 99, 411 (1981).ADSGoogle Scholar
  35. 35.
    H. M. Georgi, S. L. Glashow, and S. Nussinov, Nucl. Phys. B 193, 297 (1981).ADSGoogle Scholar
  36. 36.
    J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 2951 (1982).ADSGoogle Scholar
  37. 37.
    M. Doi, T. Kotani, and E. Takasugi, Prog. Theor. Phys. Suppl. 83, 1 (1985).ADSGoogle Scholar
  38. 38.
    P. Vogel and M. R. Zirnbauer, Phys. Rev. Lett. 57, 3148 (1986).ADSGoogle Scholar
  39. 39.
    D. O. Caldwell, J. Phys. G 17, S137 (1991).ADSGoogle Scholar
  40. 40.
    A. A. Vasenko et al., in Proceedings of the 2nd International Symposium on Underground Physics’87, Baksan Valley, USSR, Aug. 17–19, 1987 (Nauka, Moscow, 1988), p. 288.Google Scholar
  41. 41.
    A. A. Vasenko et al., Mod. Phys. Lett. A 5, 1299 (1990).ADSGoogle Scholar
  42. 42.
    H. V. Klapdor-Kleingrothaus et al., Eur. Phys. J. A 12, 147 (2001).ADSGoogle Scholar
  43. 43.
    C. E. Aalseth et al., Phys. Rev. C 65, 09007 (2002).Google Scholar
  44. 44.
    R. Luescher et al., Phys. Lett. B 434, 407 (1998).ADSGoogle Scholar
  45. 45.
    E. Fiorini and T. O. Niinikoski, Nucl. Instrum. Methods Phys. Res. 224, 83 (1984).ADSGoogle Scholar
  46. 46.
    S. R. Elliott, A. A. Hahn, and M. K. Moe, Phys. Rev. Lett. 59, 2020 (1987).ADSGoogle Scholar
  47. 47.
    H. Ejiri et al., Phys. Lett. B 258, 17 (1991).ADSGoogle Scholar
  48. 48.
    S. R. Elliott, M. K. Moe, M. A. Nelson, and M. A. Vient, J. Phys. G 17, S145 (1991).ADSGoogle Scholar
  49. 49.
    H. Ejiri et al., J. Phys. Soc. Jpn. 64, 339 (1995).ADSGoogle Scholar
  50. 50.
    R. Arnold et al., JETP Lett. 61, 170 (1995).ADSGoogle Scholar
  51. 51.
    F. A. Danevich et al., Phys. Lett. B 344, 72 (1995).ADSGoogle Scholar
  52. 52.
    S. R. Elliott et al., Phys. Rev. C 46, 1535 (1992).ADSGoogle Scholar
  53. 53.
    A. De Silva et al., Phys. Rev. C 56, 2451 (1997).ADSGoogle Scholar
  54. 54.
    A. Balysh et al., Phys. Rev. Lett. 77, 5186 (1996).ADSGoogle Scholar
  55. 55.
    D. Dassié et al., Phys. Rev. D 51, 2090 (1995).ADSGoogle Scholar
  56. 56.
    R. Arnold et al., Z. Phys. C 72, 239 (1996).ADSGoogle Scholar
  57. 57.
    R. Arnold et al., Nucl. Phys. A 636, 209 (1998).Google Scholar
  58. 58.
    R. Arnold et al., Nucl. Phys. A 658, 299 (1999).Google Scholar
  59. 59.
    A. L. Turkevich, T. E. Economou, and G. A. Cowan, Phys. Rev. Lett. 67, 3211 (1991).ADSGoogle Scholar
  60. 60.
    A. S. Barabash et al., Phys. Lett. B 345, 408 (1995).ADSGoogle Scholar
  61. 61.
    T. Kirsten et al., in Proceedings of the International Symposium on Nuclear Beta Decay and Neutrino (Osaka’86) (World Sci., Singapore, 1986), p. 81.Google Scholar
  62. 62.
    T. Bernatowicz et al., Phys. Rev. C 47, 806 (1993).ADSGoogle Scholar
  63. 63.
    O. K. Manuel, in Proceedings of the International Symposium on Nuclear Beta Decay and Neutrino (Osaka’86) (World Sci., Singapore, 1986), p. 71.Google Scholar
  64. 64.
    N. Takaoka, and K. Ogata, Z. Naturforsch. A 21, 84 (1966).ADSGoogle Scholar
  65. 65.
    N. Takaoka, Y. Motomura, and K. Nagano, Phys. Rev. C 53, 1557 (1996).ADSGoogle Scholar
  66. 66.
    A. S. Barabash, Astrophys. Space Sci. 283, 607 (2003).ADSGoogle Scholar
  67. 67.
    A. Kawashima, K. Takahashi, and A. Masuda, Phys. Rev. C 47, 2452 (1993).ADSGoogle Scholar
  68. 68.
    H. V. Klapdor-Kleingrothaus et al., Mod. Phys. Lett. A 16, 2409 (2001).ADSGoogle Scholar
  69. 69.
    A.M. Bakalyarov et al., Phys. Part. Nucl. Lett. 2, 77 (2005); hep-ex/0309016.Google Scholar
  70. 70.
    H. V. Klapdor-Kleingrothaus, I. V. Krivosheina, A. Dietz, and O. Chkvorets, Phys. Lett. B 586, 198 (2004).ADSGoogle Scholar
  71. 71.
    H. V. Klapdor-Kleingrothaus and I. V. Krivosheina, Mod. Phys. Lett. A 21, 1547 (2006).ADSGoogle Scholar
  72. 72.
    C. E. Aalseth et al., Mod. Phys. Lett. A 17, 1475 (2002).ADSGoogle Scholar
  73. 73.
    Yu. G. Zdesenko, F. A. Danevich, and V. I. Treyak, Phys. Lett. B 546, 206 (2002).ADSGoogle Scholar
  74. 74.
    A. Strumia and F. Vissani, Nucl. Phys. B 726, 294 (2005).ADSGoogle Scholar
  75. 75.
    O. Chkvorets, arXiv:0812.1206 [hep-ex].Google Scholar
  76. 76.
    C. Arnaboldi et al., Phys. Rev. Lett. 95, 142501 (2005).ADSGoogle Scholar
  77. 77.
    C. Arnaboldi et al., Phys. Rev. C 78, 035502 (2008).ADSGoogle Scholar
  78. 78.
    R. Arnold et al., Nucl. Instrum. Methods A 536, 79 (2005).Google Scholar
  79. 79.
    R. Arnold et al., Phys. Rev. Lett. 95, 182302 (2005).ADSGoogle Scholar
  80. 80.
    R. Arnold et al., Nucl. Phys. A 765, 483 (2006).ADSGoogle Scholar
  81. 81.
    R. Arnold et al., Nucl. Phys. A 781, 209 (2007).ADSGoogle Scholar
  82. 82.
    J. Argyriades et al., Phys. Rev. C 80, 032501(R) (2009).ADSGoogle Scholar
  83. 83.
    A. S. Barabash and V. B. Brudanin, arXiv:1002.2862 [nucl-ex].Google Scholar
  84. 84.
    J. Argyriades et al., arXiv:0906.2694 [nucl-ex].Google Scholar
  85. 85.
    A. S. Barabash, Yad. Fiz. 73, 166 (2010) [Phys. At. Nucl. 73, 162 (2010)]; arXiv:0807.2948 [hep-ex].Google Scholar
  86. 86.
    M. E. Wieser and J. R. De Laeter, Phys. Rev. C 64, 024308 (2001).ADSGoogle Scholar
  87. 87.
    H. Hidaka, C. V. Ly, and K. Suzuki, Phys. Rev. C 70, 025501 (2004).ADSGoogle Scholar
  88. 88.
    A. P. Meshik, C.M. Hohenberg, O.V. Pravdivtseva, and Y.S. Kapusta, Phys. Rev. C 64, 035205 (2001).ADSGoogle Scholar
  89. 89.
    A. P. Meshik, C.M. Hohenberg, O.V. Pravdivtseva, et al., Nucl. Phys. A 809, 275 (2008).ADSGoogle Scholar
  90. 90.
    H. V. Tomas et al., Phys. Rev. C 78, 054606 (2008).ADSGoogle Scholar
  91. 91.
    A. S. Barabash, Phys. Rev. C 81, 035501 (2010).ADSGoogle Scholar
  92. 92.
    M. Kortelainen and J. Suhonen, Phys. Rev. C 75, 051303(R) (2007).ADSGoogle Scholar
  93. 93.
    M. Kortelainen and J. Suhonen, Phys. Rev. C 76, 024315 (2007).ADSGoogle Scholar
  94. 94.
    F. Simkovic et al., Phys. Rev. C 77, 045503 (2008).ADSGoogle Scholar
  95. 95.
    E. Caurier et al., Phys. Rev. Lett. 100, 052503 (2008).ADSGoogle Scholar
  96. 96.
    J. Barea and F. Iachello, Phys. Rev. C 79, 044301 (2009).ADSGoogle Scholar
  97. 97.
    K. Chaturvedi et al., Phys. Rev. C 78, 054302 (2008).ADSMathSciNetGoogle Scholar
  98. 98.
    J. Suhonen and O. Civitarese, Phys. Rep. 300, 123 (1998).ADSGoogle Scholar
  99. 99.
    S. Umehara et al., Phys. Rev. C 78, 058501 (2008).ADSGoogle Scholar
  100. 100.
    F. A. Danevich et al., Phys. Rev. C 68, 035501 (2003).ADSGoogle Scholar
  101. 101.
    R. Bernabei et al., Phys. Lett. B 546, 23 (2002).ADSGoogle Scholar
  102. 102.
    A. S. Barabash, Phys. Lett. B 216, 257 (1989).ADSGoogle Scholar
  103. 103.
    C. Arnaboldi et al., Phys. Lett. B 557, 167 (2003).ADSGoogle Scholar
  104. 104.
    C. Arnaboldi et al., Nucl. Instrum. Methods Phys. Res. A 518, 775 (2004).ADSGoogle Scholar
  105. 105.
    I. C. Bandac, J. Phys. Conf. Ser. 110, 082001 (2008).ADSGoogle Scholar
  106. 106.
    I. Abt et al., hep-ex/0404039.Google Scholar
  107. 107.
    J. Janicsko-Csathy, Nucl. Phys. B Proc. Suppl. 188, 68 (2009).ADSGoogle Scholar
  108. 108.
    Majorana White Paper, nucl-ex/0311013.Google Scholar
  109. 109.
    V. E. Guiseppe, arXiv:0811.2446 [nucl-ex].Google Scholar
  110. 110.
    M. Danilov et al., Phys. Lett. B 480, 12 (2000).ADSGoogle Scholar
  111. 111.
    R. Gornea, J. Phys. Conf. Ser. 179, 012004 (2009).ADSGoogle Scholar
  112. 112.
    A. S. Barabash, Czech. J. Phys. 52, 575 (2002).ADSGoogle Scholar
  113. 113.
    A. S. Barabash, Yad. Fiz. 67, 2008 (2004) [Phys. At. Nucl. 67, 1984 (2004)].Google Scholar
  114. 114.
    E. Chauveau, AIP Conf. Proc. 1180, 26 (2009).ADSGoogle Scholar
  115. 115.
    K. Nakamura, Report at International Conference Neutrino’2010, Athens, Greece, 13–19 June, 2010.Google Scholar
  116. 116.
    L. A. Sliv, Zh. Eksp. Teor. Fiz. 20, 1035 (1950).Google Scholar
  117. 117.
    Ya. B. Zeldovich, S. Yu. Luk’yanov, and Ya. A. Smorodinsky, Usp. Fiz. Nauk 54, 361 (1954).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Institute for Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations