Skip to main content
Log in

Reconstruction of \( \tilde \tau _1 \) mass at the LHC

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The cascade mass reconstruction approach was used for mass reconstruction of the lightest \( \tilde \tau \) produced at the LHC in the cascade decay \( \tilde g \to \tilde bb \to \tilde \chi _2^0 bb \to \tilde \tau _1 \tau bb \to \tilde \chi _1^0 \tau \tau bb \). The \( \tilde \tau _1 \) mass was reconstructed assuming that masses of gluino, bottom squark, and two lightest neutralinos were reconstructed in advance. SUSY data sample sets for the SU(3) model point containing 160k events each were generated which corresponded to an integrated luminosity of about 8 fb−1 at 14 TeV. These events were passed through the AcerDET detector simulator, which parametrized the response of a generic LHC detector. The mass of the \( \tilde \tau _1 \) was reconstructed with a precision of about 20% on average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Aad et al. (The ATLAS Collab.), arXiv: 0901. 0512 [hep-ex].

  2. H. Baer, K. Hagiwara, and X. Tata, Phys. Rev. D 35, 1598 (1987); H. Baer, D. D. Karatas, and X. Tata, Phys. Rev. D 42, 2259 (1990); H. Baer, C. Kao, and X. Tata, Phys. Rev. D 48, 5175 (1993); H. Baer, C. Chen, F. Paige, andX. Tata, Phys. Rev. D50, 4508 (1994).

    Article  ADS  Google Scholar 

  3. S. Abdullin et al. (CMS Collab.), J. Phys. G 28, 469 (2002).

    Article  ADS  Google Scholar 

  4. I. Hinchliffe et al., Phys. Rev. D 55, 5520 (1997); I. Hinchliffe and F. E. Paige, Phys. Rev. D 61, 095011 (2000); H. Bachacou, I. Hinchliffe, and F. E. Paige, Phys. Rev. D 62, 015009 (2000).

    Article  ADS  Google Scholar 

  5. B. C. Allanach, C. G. Lester, M. A. Parker, and B. R. Webber, J. High Energy Phys. 0009, 004 (2000).

    Article  ADS  Google Scholar 

  6. B. K. Gjelsten et al., ATLAS internal note ATL-PHYS-2004-007 (CERN, Geneva, 2004); G. Weiglein et al. (LHC/LC Study Group), hepph/0410364.

    Google Scholar 

  7. B. K. Gjelsten, D. J. Miller, and P. Osland, J. High Energy Phys. 0412, 003 (2004).

    Article  ADS  Google Scholar 

  8. B. K. Gjelsten, D. J. Miller, and P. Osland, J. High Energy Phys. 0506, 015 (2005).

    Article  ADS  Google Scholar 

  9. C. G. Lester, M. A. Parker, and M. J. White, J. High Energy Phys. 0601, 080 (2006).

    Article  ADS  Google Scholar 

  10. M. M. Nojiri, G. Polesello, and D. R. Tovey, hepph/0312317.

  11. K. Kawagoe, M. M. Nojiri, and G. Polesello, Phys. Rev. D 71, 035008 (2005).

    Article  ADS  Google Scholar 

  12. R. M. Djilkibaev and R. V. Konoplich, J. High Energy Phys. 0808, 036 (2008).

    Article  Google Scholar 

  13. D. N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007).

    Article  ADS  Google Scholar 

  14. F. E. Paige, D. Protopopescu, H. Baer, and X. Tata, hep-ph/0312045.

  15. G. Marchesini et al., Comput. Phys. Commun. 67, 465 (1992); G. Corcella et al., J. High Energy Phys. 0101, 010 (2001); S. Moretti et al., J. High Energy Phys. 0204, 028 (2002).

    Article  ADS  Google Scholar 

  16. E. Richter-Was, hep-ph/0207355.

  17. G. Aad et al. (The ATLAS Collab.), JINST 3, S08003 (2008).

    Article  ADS  Google Scholar 

  18. S. Chatrchyan et al. (The CMS Collab.), JINST 3, S08004 (2008).

    Article  ADS  Google Scholar 

  19. M. Ibe and R. Kitano, arXiv: 0712.3300 [hep-ph].

  20. K. Desch, T. Nattermann, P. Wienemann, and C. Zendler, ATL-PHYS-INT-2008-08 (CERN, Geneva, 2008).

    Google Scholar 

  21. T. Nattermann, K. Desch, P. Wienemann, and C. Zendler, J. High Energy Phys. 0904, 057 (2009).

    Article  ADS  Google Scholar 

  22. F. James and M. Roos, Comput. Phys. Commun. 10, 343 (1975).

    Article  ADS  Google Scholar 

  23. C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).

    Article  ADS  Google Scholar 

  24. R. M. Djilkibaev and R. V. Konoplich, ATL-COMPHYS-2007-059 (CERN, Geneva, 2007).

    Google Scholar 

  25. D. J. Miller, P. Osland, and A. R. Raklev, J. High Energy Phys. 0603, 034 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Konoplich.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djilkibaev, R.M., Konoplich, R.V. Reconstruction of \( \tilde \tau _1 \) mass at the LHC. Phys. Atom. Nuclei 74, 90–97 (2011). https://doi.org/10.1134/S106377881101011X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377881101011X

Keywords

Navigation