Skip to main content
Log in

Contribution of inverse gluon emission to QCD corrections to the Drell-Yan process for experiments at the large hadron collider (LHC)

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The contributions of inverse gluon emission to the lowest order QCD corrections to the Drell-Yan process for future experiments at LHC are calculated. The use of fully differential cross sections makes it possible to apply readily the results of these calculations for experimental purposes (in correcting data from future experiments at LHC). It is shown analytically that the present results are independent of the quark mass. A numerical analysis of respective radiative effects is performed by means of the READY FORTRAN code with allowance for the experimental cuts used at the Compact Muon Solenoid (CMS) detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Matveev, R.M. Muradyan, and A. N. Tavkhelidze, Preprint Nю R2-4543, OIYaI (Joint Inst. Nucl. Res., Dubna, 1969); S. D. Drell and T. M. Yan, SLAC-PUB-0755 (June 1970), Phys. Rev. Lett. 25, 316, 902(E) (1970).

    Google Scholar 

  2. I. Belotelov et al., CERN-CMS-NOTE-2006-123.

  3. V. Mosolov and N. Shumeiko, Nucl. Phys. B 186, 397 (1981); A. V. Soroko and N. M. Shumeiko, Yad. Fiz. 52, 514 (1990) [Sov. J. Nucl. Phys. 52, 329 (1990)].

    Article  ADS  Google Scholar 

  4. U. Baur et al., Phys. Rev. D 65, 033007 (2002) [hepph/0108274].

    Article  ADS  Google Scholar 

  5. A. Andonov et al., Comput. Phys. Commun. 174, 481 (2006) [hep-ph/0411186]; A. Arbuzov et al., Eur. Phys. J. C. 46, 407 (2006); Eur. Phys. J. C. 50, 505 (E) (2007); Eur. Phys. J. C. 54, 451 (2008); arXiv:0711.0625 [hep-ph].

    Article  ADS  Google Scholar 

  6. http://ubhex.physics.buffalo.edu/~baur/zgrad2.tar.gz

  7. U. Baur, Phys. Rev. D 75, 013005 (2007) [hepph/0611241].

    Article  ADS  Google Scholar 

  8. V. A. Zykunov, Yad. Fiz. 71, 757 (2008) [Phys. At. Nucl. 71, 732 (2008)].

    Google Scholar 

  9. V. A. Zykunov, Yad. Fiz. 69, 1557 (2006) [Phys. At. Nucl. 69, 1522 (2006)].

    Google Scholar 

  10. V. A. Zykunov, Phys. Rev. D 75, 073019 (2007) [hepph/0509315].

    Article  ADS  Google Scholar 

  11. R. Hambert, W. L. van Neerven, and T. Matsuura, Nucl. Phys. B 359, 343 (1991).

    Article  ADS  Google Scholar 

  12. H. Baer, J. Ohnemus, and J. Owens, Phys. Rev. D 40, 2844 (1989); 42, 61 (1990); W. Giele and E. Glover, Phys. Rev. D 46, 1980 (1992).

    Article  ADS  Google Scholar 

  13. C. Anastasiou et al., Phys. Rev. Lett. 91, 182002 (2003); Phys. Rev. D 69, 094008 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  14. H. Baer and M. H. Reno, Phys. Rev. D 43, 2892 (1991).

    Article  ADS  Google Scholar 

  15. A. Andonov et al., arXiv:0901.2785v1 [hep-ph].

  16. G. Balossini et al., Acta Phys. Polon. B 39, 1675 (2008) [arXiv:0805.1129 [hep-ph]].

    ADS  Google Scholar 

  17. K. Melnikov and F. Petriello, Phys. Rev. D 74, 114017 (2006) [hep-ph/0609070]; S. Catani et al., Phys. Rev. Lett. 103, 082001 (2009) [arXiv:0903.2120 [hepph]].

    Article  ADS  Google Scholar 

  18. V. A. Zykunov, Yad. Fiz. 73, 1269 (2010) [Phys. At. Nucl. 73, 1229 (2010)].

    Google Scholar 

  19. M. Böhm, H. Spiesberger, and W. Hollik, Fortschr. Phys. 34, 687 (1986).

    Google Scholar 

  20. V. A. Zykunov, Eur. Phys. J. C 3, 9 (2001) [hepph/0107059].

    Google Scholar 

  21. W. A. Bardeen et al., Phys. Rev. D 18, 3998 (1978).

    Article  ADS  Google Scholar 

  22. A. B. Arbuzov and R. R. Sadykov, JETP 106, 488 (2008) [arXiv:0707.0423 [hep-ph]].

    Article  ADS  Google Scholar 

  23. C. Amsler et al., Phys. Lett. B 667, 1 (2008).

    Article  ADS  Google Scholar 

  24. J. Pumplin et al., J. High Energy Phys. 0207, 012 (2002) [hep-ph/0201195].

    Article  ADS  Google Scholar 

  25. A. D. Martin et al., Eur. Phys. J. C 39, 155 (2005) [hep-ph/0411040].

    Article  ADS  Google Scholar 

  26. CMS Collab. (G. L. Bayatian et al.), J. Phys. G 34, 995 (2007).

    Article  ADS  Google Scholar 

  27. A. De Rujula, R. Petronzio, and A. Savoy-Navarro, Nucl. Phys. B 154, 394 (1979).

    Article  ADS  Google Scholar 

  28. G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Zykunov.

Additional information

Original Russian Text © V.A. Zykunov, 2011, published in Yadernaya Fizika, 2011, Vol. 74, No. 1, pp. 72–84.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zykunov, V.A. Contribution of inverse gluon emission to QCD corrections to the Drell-Yan process for experiments at the large hadron collider (LHC). Phys. Atom. Nuclei 74, 72–85 (2011). https://doi.org/10.1134/S1063778811010091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778811010091

Keywords

Navigation