Skip to main content
Log in

Double-parton distributions in QCD

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

It is shown that the factorization hypothesis, which is usually applied to two-parton distributions at the present time in analyzing experimental data on double parton scattering, is in an obvious contradiction with the QCD evolution equations. The predictions of QCD for basic properties of two-parton distribution are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. V. Landshoff and J. C. Polkinghorne, Phys. Rev. D 18, 3344 (1978).

    Article  ADS  Google Scholar 

  2. F. Takagi, Phys. Rev. Lett. 43, 1296 (1979).

    Article  ADS  Google Scholar 

  3. C. Goebel, D. M. Scott, and F. Halzen, Phys. Rev. D 22, 2789 (1980).

    Article  ADS  Google Scholar 

  4. N. Paver and D. Treleani, Nuovo Cimento A 70, 215 (1982).

    Article  ADS  Google Scholar 

  5. B. Humpert, Phys. Lett. B 131, 461 (1983).

    Article  ADS  Google Scholar 

  6. B. Humpert and R. Odorico, Phys. Lett. B 154, 211 (1985).

    Article  ADS  Google Scholar 

  7. M. Mekhfi, Phys. Rev. D 32, 2371 (1985).

    Article  ADS  Google Scholar 

  8. M. Mekhfi, Phys. Rev. D 32, 2380 (1985).

    Article  ADS  Google Scholar 

  9. L. Ametller, N. Paver, and D. Treleani, Phys. Lett. B 169, 289 (1986).

    Article  ADS  Google Scholar 

  10. F. Halzen, P. Hoyer, and W. J. Stirling, Phys. Lett. B 188, 375 (1987).

    Article  ADS  Google Scholar 

  11. T. Sjöstrand and M. van Zijl, Phys. Rev. D 36, 2019 (1987).

    Article  ADS  Google Scholar 

  12. M. Mangano, Z. Phys. C 42, 331 (1989).

    Article  Google Scholar 

  13. R. M. Godbole, S. Gupta, and J. Lindfors, Z. Phys. C 47, 69 (1990).

    Article  Google Scholar 

  14. M. Drees and T. Han, Phys. Rev. Lett. 77, 4142 (1996).

    Article  ADS  Google Scholar 

  15. G. Calucci and D. Treleani, Nucl. Phys. B Proc. Suppl. 71, 392 (1999).

    Article  ADS  Google Scholar 

  16. G. Calucci and D. Treleani, Phys. Rev. D 60, 054023 (1999).

    Article  ADS  Google Scholar 

  17. A. Del Fabbro and D. Treleani, Phys. Rev. D 61, 077502 (2000).

    Article  ADS  Google Scholar 

  18. T. Sjöstrand and P. Z. Skands, J. High Energy Phys. 0403, 053 (2004).

    Article  ADS  Google Scholar 

  19. T. Sjöstrand and P. Z. Skands, Eur. Phys. J. C 39, 129 (2005).

    Article  ADS  Google Scholar 

  20. E. Maina, J. High Energy Phys. 0904, 098 (2009); J. High Energy Phys. 0909, 081 (2009).

    Article  ADS  Google Scholar 

  21. T. C. Rogers and M. Strikman, Phys. Rev. D 81, 016013 (2010).

    Article  ADS  Google Scholar 

  22. J. R. Gaunt and W. J. Stirling, J. High Energy Phys. 1003, 005 (2010).

    Article  ADS  Google Scholar 

  23. E. L. Berger, C. B. Jackson, and G. Shaughnessy, Phys. Rev. D 81, 014014 (2010).

    Article  ADS  Google Scholar 

  24. AFS Collab. (T. Akesson et al.), Z. Phys. C 34, 163 (1987).

    Article  ADS  Google Scholar 

  25. UA2 Collab. (J. Alitti et al.), Phys. Lett. B 268, 145 (1991).

    Article  ADS  Google Scholar 

  26. CDF Collab. (F. Abe et al.), Phys. Rev. D 47, 4857 (1993).

    Article  ADS  Google Scholar 

  27. CDF Collab. (F. Abe et al.), Phys. Rev. D 56, 3811 (1997).

    Article  ADS  Google Scholar 

  28. D0 Collab. (V. M. Abazov et al.), Phys. Rev. D 81, 052012 (2010).

    Article  ADS  Google Scholar 

  29. V. V. Abramov et al., Yad. Fiz. 69, 887 (2006) [Phys. At. Nucl. 69, 860 (2006)].

    Google Scholar 

  30. A. Del Fabbro and D. Treleani, Phys. Rev. D 66, 074012 (2002).

    Article  ADS  Google Scholar 

  31. M. Y. Hussein, Nucl. Phys. B Proc. Suppl. 174, 55 (2007).

    Article  ADS  Google Scholar 

  32. M. Y. Hussein, arXiv:0710.0203 [hep-ph].

  33. A. Kulesza and W. J. Stirling, Phys. Lett. B 475, 168 (2000).

    Article  ADS  Google Scholar 

  34. E. Cattaruzza, A. Del Fabbro, and D. Treleani, Phys. Rev. D 72, 034022 (2005).

    Article  ADS  Google Scholar 

  35. M. Bahr, S. Gieseke, and M. H. Seymour, J. High Energy Phys. 0807, 076 (2008).

    Article  ADS  Google Scholar 

  36. V. N. Gribov and L. N. Lipatov, Yad. Fiz. 15, 781, 1218 (1972) [Sov. J. Nucl. Phys. 15, 438, 675 (1972)].

    Google Scholar 

  37. L. N. Lipatov, Yad. Fiz. 20, 181 (1974) [Sov. J. Nucl. Phys. 20, 94 (1974)].

    Google Scholar 

  38. Yu. L. Dokshitser, Zh. Éksp. Teor. Fiz. 73, 1216 (1977) [Sov. Phys. JETP 46, 641 (1977)].

    Google Scholar 

  39. G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977).

    Article  ADS  Google Scholar 

  40. R. Kirschner, Phys. Lett. B 84, 266 (1979).

    Article  ADS  Google Scholar 

  41. V. P. Shelest, A. M. Snigirev, and G. M. Zinovjev, Phys. Lett. B 113, 325 (1982).

    Article  ADS  Google Scholar 

  42. G. M. Zinovjev, A. M. Snigirev, and V. P. Shelest, Teor. Mat. Fiz. 51, 317 (1982).

    Google Scholar 

  43. K. Konishi, A. Ukawa, and G. Veneziano, Phys. Lett. B 78, 243 (1978); Nucl. Phys. B 157, 45 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  44. J. C. Collins, D. E. Soper, and G. Sterman, in Perturbative QCD, Ed. by A. Mueller (World Sci., Singapore, 1989), pp. 1.

    Google Scholar 

  45. A. M. Snigirev, Phys. Rev. D 68, 114012 (2003).

    Article  ADS  Google Scholar 

  46. V. L. Korotkikh and A. M. Snigirev, Phys. Lett. B 594, 171 (2004).

    Article  ADS  Google Scholar 

  47. A.M. Snigirev, arXiv:0809.4377 [hep-ph].

  48. V. P. Shelest, A. M. Snigirev, and G. M. Zinovjev, JINR Commun. No. E2-82-194 (Dubna, 1982); Preprint ITP-83-46E (Kiev, 1983).

  49. M. J. Puhala, Phys. Rev. D 22, 1087 (1980).

    Article  ADS  Google Scholar 

  50. CTEQ Collab. (H. L. Lai et al.), Eur. Phys. J. C 12, 375 (2000).

    Article  Google Scholar 

  51. Yu. L. Dokshitzer, D. I. Dyakonov, and S. I. Troyan, Phys. Rep. 58, 269 (1980).

    Article  ADS  Google Scholar 

  52. I. Vendramin, Nuovo Cimento A 62, 21 (1981).

    Article  ADS  Google Scholar 

  53. A. M. Snigirev, Phys. Rev. D 81, 065014 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Snigirev.

Additional information

Original Russian Text © A.M. Snigirev, 2011, published in Yadernaya Fizika, 2011, Vol. 74, No. 1, pp. 158–165.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snigirev, A.M. Double-parton distributions in QCD. Phys. Atom. Nuclei 74, 158–165 (2011). https://doi.org/10.1134/S1063778810121051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778810121051

Keywords

Navigation