Skip to main content
Log in

Instability of string models of baryons: Character and manifestations

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The character of the instability of a rotational state (rotation of the system at a constant speed) against small perturbations is studied in detail for the Y string model of the baryon. It is shown that the existing instability is due to the presence of repeated real-valued frequencies in the spectrum of small perturbations and that there are no complex-valued frequencies in this spectrum. This leads to a linear growth of small-perturbation amplitudes. A comparison of the Y configuration with the q-q-q linear string model of the baryon reveals a difference in the character of the instability of rotational states of these systems and in the manifestations of this instability. In particular, there are exponentially growing modes in the excitation spectrum of the linear model, which lead to an additional contribution to the baryon-state width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Artru, Nucl. Phys. B 85, 442 (1975).

    Article  ADS  Google Scholar 

  2. I. Yu. Kobzarev, L. A. Kondratyuk, B. V. Martem’yanov, and M. G. Shchepkin, Yad. Fiz. 45, 526 (1987) [Sov. J. Nucl. Phys. 45, 330 (1987)].

    Google Scholar 

  3. A. Shodos and C. B. Thorn, Nucl. Phys. B 72, 509 (1974).

    Article  ADS  Google Scholar 

  4. P. A. Collins, J. L. Hopkinson, and R. W. Tucker, Nucl. Phys. B 100, 157 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  5. K. Sundermeyer and A. de la Torre, Phys. Rev. D 15, 1745 (1977).

    Article  ADS  Google Scholar 

  6. K. Kamimura, Prog. Theor. Phys. 62, 508 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  7. M. S. Plyushchaĭ, G. P. Pron’ko, and A. V. Razumov, Teor.Mat. Fiz. 63, 97 (1985).

    Google Scholar 

  8. G. S. Sharov, Yad. Fiz. 65, 938 (2002) [Phys. At. Nucl. 65, 906 (2002)].

    Google Scholar 

  9. G. S. Sharov, Yad. Fiz. 62, 1831 (1999) [Phys. At. Nucl. 62, 1705 (1999)].

    Google Scholar 

  10. G. S. Sharov, Phys. Rev. D 62, 094015 (2000).

    Article  ADS  Google Scholar 

  11. G. S. Sharov, Yad. Fiz. 71, 598 (2008) [Phys. At. Nucl. 71, 574 (2008)].

    Google Scholar 

  12. I. Yu. Kobzarev, B. V. Martem’yanov, and M. G. Shchepkin, Yad. Fiz. 48, 541 (1988) [Sov. J. Nucl. Phys. 48, 344 (1988)].

    Google Scholar 

  13. I. Yu. Kobzarev, B. V. Martem’yanov, and M. G. Shchepkin, Usp. Fiz. Nauk 162(4), 1 (1992) [Sov. Phys. Usp. 35, 257 (1992)].

    Google Scholar 

  14. K. S. Gupta and C. Rosenzweig, Phys. Rev. D 50, 3368 (1994).

    Article  ADS  Google Scholar 

  15. G. S. Sharov, Phys. Rev. D 79, 114025 (2009).

    Article  ADS  Google Scholar 

  16. V. P. Petrov and G. S. Sharov, Mat. Model. 11(7), 39 (1999); hep-ph/9812527.

    MATH  MathSciNet  Google Scholar 

  17. A. Inopin and G. S. Sharov, Phys. Rev. D 63, 054023 (2001).

    Article  ADS  Google Scholar 

  18. C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Sharov.

Additional information

Original Russian Text © G.S. Sharov, 2010, published in Yadernaya Fizika, 2010, Vol. 73, No. 12, pp. 2082–2089.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharov, G.S. Instability of string models of baryons: Character and manifestations. Phys. Atom. Nuclei 73, 2027–2034 (2010). https://doi.org/10.1134/S1063778810120082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778810120082

Keywords

Navigation