Skip to main content
Log in

Electroproduction of ρ 0 mesons on protons in quasielastic kinematics at intermediate energies and spin-flip mechanism of direct meson knockout

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

It is shown that the amplitude for the direct knockout of ρ 0 mesons plays an important role at energies W above the resonance region, W ≳ 2 GeV, and rather high values of Q 2 ≳ 1.5−2 GeV2/c 2 and that it corresponds to the t pole in the channel of the virtual decay pp + π 0 accompanied by quark-spin flip upon momentum transfer to the meson, π 0 + γ* T ρ 0. The contributions of several scalar mesons (pp + f 0 channel), the contribution of the tensor meson f 2, and effects of the interference between different contributions were taken into account in addition to the contribution of the π 0 meson. The vectorand tensor-meson-dominance models were used to estimate the respective vertex constants. Within the proposed mechanism, the differential cross sections L /dt and T /dt were calculated for several W and Q 2 values at which the respective total cross sections were measured by the CLAS Collaboration. Agreement with data on the transverse part of the total cross section, σ T , was attained, whereby the assumption of a dominant role of magnetic spin transitions in the meson skin of the nucleon under conditions of quasielastic-knockout kinematics is confirmed. At the same time, the contribution of spin-flip transitions is suppressed in the longitudinal part of the cross section, σ L , and this is confirmed by the results of our calculations. The behavior of the differential cross section T /dt is predicted with an eye to future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Güttner, G. Chanfray, H. J. Pirner, and B. Povh, Nucl. Phys. A 429, 389 (1984); H. Holtmann, A. Szczurek, and J. Speth, Nucl. Phys. A 596, 631 (1996).

    Article  ADS  Google Scholar 

  2. V. G. Neudatchin, N. P. Yudin, and L. L. Sviridova, Yad. Fiz. 60, 2020 (1997) [Phys. At. Nucl. 60, 1848 (1997)]; N. P. Yudin, L. L. Sviridova, and V. G. Neudatchin, Yad. Fiz. 61, 1689 (1998) [Phys. At.Nucl. 61, 1577 (1998)]; V. G. Neudatchin, L. L. Sviridova, and N. P. Yudin, Yad. Fiz. 65, 594 (2002) [Phys. At. Nucl. 65, 567 (2002)].

    Google Scholar 

  3. M. Guidal, J.-M. Laget, and M. Vanderhaegen, Nucl. Phys. A 627, 645 (1997).

    Article  ADS  Google Scholar 

  4. I. T. Obukhovsky, V. G. Neudatchin, L. L. Sviridova, and N. P. Yudin, Yad. Fiz. 66, 338, 2233 (2003) [Phys. At. Nucl. 66, 313, 2183 (2003)].

    Google Scholar 

  5. V. G. Neudatchin, I. T. Obukhovsky, L. L. Sviridova, and N. P. Yudin, Nucl. Phys. A 739, 124 (2004).

    Article  ADS  Google Scholar 

  6. P. Brauel, T. Canzler, D. Cords, et al., Z. Phys. C 3, 101 (1979); C. J. Bebek, C. N. Brown, S. D. Holmes, et al., Phys. Rev. D 17, 1693 (1978); J. Volmer, D. Abbott, H. Anklin, et al., Phys. Rev. Lett. 86, 1713 (2001).

    Article  ADS  Google Scholar 

  7. V. G. Neudatchin, I. T. Obukhovsky, L. L. Sviridova, and N. P. Yudin, Centr.Eur. J. Phys. 2(3), 511 (2004).

    Article  ADS  Google Scholar 

  8. D. O. Riska and G. E. Brown, Nucl. Phys. A 679, 577 (2001).

    Article  ADS  Google Scholar 

  9. V. G. Neudatchin, I. T. Obukhovsky, L. L. Sviridova, D. K. Fedorov, and N. P. Yudin, Yad. Fiz. 70, 889 (2007) [Phys. At. Nucl. 70, 855 (2007)].

    Google Scholar 

  10. A. Faessler, T. Gutsche, V. E. Lyubovitskji, and I. T. Obukhovsky, Phys. Rev. C 76, 025213 (2007).

    Article  ADS  Google Scholar 

  11. G. M. Huber et al. (Jefferson Lab. F π Collab.), Phys. Rev. C 78, 045203 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  12. D. Kharzeev, Yu. V. Kovchegov, and E. Levin, Nucl. Phys. A 690, 621 (2001); R. Enberg, L.Motyka, and G. Poludniowski, Eur. Phys. J. C 26, 219 (2002).

    Article  ADS  Google Scholar 

  13. M. A. Pichowsky and T.-S.H. Lee, Phys. Lett. B 379, 1 (1996); Phys. Rev. D 56, 1644 (1997).

    Article  ADS  Google Scholar 

  14. D. Roy et al., Prog. Theor. Phys. 103, 747 (2000)

    Article  ADS  Google Scholar 

  15. Y. Oh and T.-S. H. Lee, Phys. Rev. C 69, 025201 (2004).

    Article  ADS  Google Scholar 

  16. CLAS Collab. (C. Hadjidakis et al.), Phys. Lett. B 605, 256 (2005).

    Article  ADS  Google Scholar 

  17. N. I. Kochelev and V. Vento, Phys. Lett. B 515, 375 (2001); Y. Oh, A. I. Titov, S. N. Yang, and T. Morii, Phys. Lett. B 462, 23 (1999); Nucl. Phys. A 684, 354 (2001).

    Article  ADS  Google Scholar 

  18. CLAS Collab. (J. P. Santoro et al.), Phys. Rev. C 78, 025210 (2008).

    Article  Google Scholar 

  19. V. G. Efimov and M. A. Ivanov, The Quark Confinement Model of Hadrons (IOP Publ., Bristol, 1993).

    Google Scholar 

  20. A. Faessler, T. Gutsche, V. A. Ivanov, et al., Phys. Rev. D 68, 014011 (2003).

    Article  ADS  Google Scholar 

  21. SND Collab. (M. N. Achasov et al.), Phys. Lett. B 537, 201 (2002).

    Article  Google Scholar 

  22. T. Branz, T. Gutsche, and V. E. Lyubovitskij, Eur. Phys. J. A 37, 303 (2008).

    Article  ADS  Google Scholar 

  23. C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).

    Article  ADS  Google Scholar 

  24. B. Renner, Nucl. Phys. B 30, 634 (1971); Phys. Lett. B 33, 599 (1970).

    Article  ADS  Google Scholar 

  25. H. Goldberg, Phys. Rev. 171, 1485 (1968).

    Article  ADS  Google Scholar 

  26. E. Borie and F. Kaiser, Nucl. Phys. B 126, 173 (1977).

    Article  ADS  Google Scholar 

  27. S. B. Berger and B. T. Feld, Phys. Rev. D 8, 3875 (1973); V.M. Budnev and A. E. Kaloshin, Phys. Lett. B 86, 351 (1979); D. Parashar, Phys. Rev. D 21, 1904 (1980).

    Article  ADS  Google Scholar 

  28. Yu. Kalashnikova et al., Phys. Rev. C 73, 045203 (2006).

    Article  ADS  Google Scholar 

  29. M. Kirchbach and D. O. Riska, Nucl. Phys. A 594, 419 (1995); M. Kirchbach, L. Tiator, S. Neumeier, and S. Kamalov, nucl-th/9609021.

    Article  ADS  Google Scholar 

  30. D. G. Cassel et al., Phys. Rev. D 24, 2787 (1981).

    Article  ADS  Google Scholar 

  31. J.-M. Laget and R. Mendez-Galain, Nucl. Phys. A 581, 397 (1995).

    Article  ADS  Google Scholar 

  32. P. V. Landshoff and O. Nachtmann, Z. Phys. C 35, 405 (1987); A. Donnachie and P. V. Landshoff, Nucl. Phys.B 244, 322 (1984); A.Donachie and P. V. Landshoff, arXiv: 0803.0686 [hep-ph].

    Article  ADS  Google Scholar 

  33. R. A. Williams, Phys. Rev. C 57, 223 (1998); S. R. Cotanch and R. A. Williams, Phys. Lett. B 549, 85 (2002).

    Article  ADS  Google Scholar 

  34. L. S. Kisslinger, Nucl. Phys. A 629, 30c (1998); L. S. Kisslinger and W.-H. Ma, Phys. Lett. B 485, 367 (2000); L. S. Kisslinger and M. B. Johnson, Phys. Lett. B 523, 127 (2001).

    Article  ADS  Google Scholar 

  35. F. Giacosa, T. Gutsche, V. E. Lyubovitskij, and A. Faessler, Phys. Rev. D 72, 094006 (2005).

    Article  ADS  Google Scholar 

  36. B. Friman and M. Soyeur, Nucl. Phys. A 600, 477 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. T. Obukhovsky.

Additional information

Original Russian Text © I.T. Obukhovsky, V.G. Neudatchin, L.L. Sviridova, D.K. Fedorov, 2010, published in Yadernaya Fizika, 2010, Vol. 73, No. 9, pp. 1602–1616.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obukhovsky, I.T., Neudatchin, V.G., Sviridova, L.L. et al. Electroproduction of ρ 0 mesons on protons in quasielastic kinematics at intermediate energies and spin-flip mechanism of direct meson knockout. Phys. Atom. Nuclei 73, 1556–1570 (2010). https://doi.org/10.1134/S1063778810090103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778810090103

Keywords

Navigation