Skip to main content
Log in

Z′ bosons, the NuTeV anomaly, and the Higgs boson mass

  • Elementary Particles and Fields
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Fits to the precision electroweak data that include the NuTeV measurement are considered in family universal, anomaly free U(1) extensions of the Standard Model. In data sets from which the hadronic asymmetries are excluded, some of the Z′ models can double the predicted value of the Higgs boson mass, from ∼60 to ∼120 GeV, removing the tension with the LEP II lower bound, while also modestly improving the χ 2 confidence level. The effect of the Z′ models on both m H and the χ 2 confidence level is increased when the NuTeV measurement is included in the fit. Both the original NuTeV data and a revised estimate by the PDG are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Novikov, L. Okun, A. Rozanov, and M. Vysotsky, Preprint No. CPPM-95-1, ITEP-19-95 (Moscow, Mar. 1995); hep-ph/9503308.

  2. V. A. Novikov, L. B. Okun, A. N. Rozanov, and M. I. Vysotsky, Phys. Lett. B 529, 111 (2002); hepph/0111028; JETP Lett. 76, 127 (2002) [Pis’ma Zh. Eksp. Teor. Fiz. 76, 158 (2002)]; hep-ph/0203132.

    Article  ADS  Google Scholar 

  3. M. S. Chanowitz, Phys. Rev. Lett. 87, 231802 (2001); hep-ph/0104024; Phys. Rev. D 66, 073002 (2002); hep-ph/0207123; hep-ph/0304199.

    Article  ADS  Google Scholar 

  4. M. S. Chanowitz, arXiv: 0806.0890v2 [hep-ph].

  5. The ALEPH, DELPHI, L3, OPAL, SLD Collabs., the LEP Electroweak Working Group, the SLD Electroweak, and Heavy Flavour Groups, Phys. Rep. 427, 257 (2006); hep-ex/0509008; http://lepewwg.web.cern.ch/LEPEWWG for the most recent data.

    ADS  Google Scholar 

  6. G. P. Zeller et al. (NuTeV Collab.), Phys. Rev. Lett. 88, 091802 (2002); 90, 239902 (E) (2003).

    Article  ADS  Google Scholar 

  7. P. L. Anthony et al. (SLAC E158 Collab.), Phys. Rev. Lett. 95, 081601 (2005).

    Article  ADS  Google Scholar 

  8. S. C. Bennett and C. E. Wieman, Phys. Rev. Lett. 82, 2484 (1999).

    Article  ADS  Google Scholar 

  9. A. B. Arbuzov et al., Comput. Phys. Commun. 174, 728 (2006); hep-ph/0507146.

    Article  ADS  Google Scholar 

  10. M. Awramik, M. Czakon, and A. Freitas, J. High Energy Phys. 0611, 048 (2006); hep-ph/0608099.

    Article  ADS  Google Scholar 

  11. M. Awramik, M. Czakon, A. Freitas, and G. Weiglein, Phys. Rev. D 69, 053006 (2004); hep-ph/0311148.

    Article  ADS  Google Scholar 

  12. Talk posted at http://theory.fnal.gov/jetp/talks/chanowitz.pdf, Feb. 2007.

  13. S. Davidson et al., J. High Energy Phys. 0202, 037 (2002); hep-ph/0112302.

    Article  ADS  Google Scholar 

  14. D. Mason et al. (NuTeV Collab.), Phys. Rev. Lett. 99, 192001 (2007).

    Article  ADS  Google Scholar 

  15. C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).

    Article  ADS  Google Scholar 

  16. P. Langacker, arXiv: 0801.1345 [hep-ph].

  17. M. S. Chanowitz, J. Ellis, and M. K. Gaillard, Nucl. Phys. B 128, 506 (1977).

    Article  ADS  Google Scholar 

  18. T. Appelquist, B. A. Dobrescu, and A. R. Hopper, Phys. Rev. D 68, 035012 (2003); hep-ph/0212073.

    Article  ADS  Google Scholar 

  19. B. Holdom, Phys. Lett. B 166, 196 (1986).

    Article  ADS  Google Scholar 

  20. F. del Aguila, M. Masip, and M. Perez-Victoria, Nucl. Phys. B 456, 531 (1995); hep-ph/9507455.

    Article  ADS  Google Scholar 

  21. P. Galison and A. Manohar, Phys. Lett. B 136, 279 (1984).

    Article  ADS  Google Scholar 

  22. M. S. Carena, A. Daleo, B. A. Dobrescu, and T. M. P. Tait, Phys. Rev. D 70, 093009 (2004); hepph/0408098.

    Article  ADS  Google Scholar 

  23. A. Abulencia et al. (CDFCollab.), Phys.Rev. Lett. 96, 211801 (2006); hep-ex/0602045.

    Article  ADS  Google Scholar 

  24. A. Ferroglia, A. Lorca, and J. J. van der Bij, Ann. Phys. (Leipzig) 16, 563 (2007); hep-ph/0611174.

    Article  MATH  ADS  Google Scholar 

  25. B. Holdom, Phys. Lett. B 259, 329 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Chanowitz.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chanowitz, M.S. Z′ bosons, the NuTeV anomaly, and the Higgs boson mass. Phys. Atom. Nuclei 73, 680–688 (2010). https://doi.org/10.1134/S1063778810040149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778810040149

Keywords

Navigation