Advertisement

Physics of Atomic Nuclei

, Volume 73, Issue 2, pp 339–344 | Cite as

Energy-level ordering for frustrated spin ladder models

  • T. Hakobyan
Elementary Particles and Fields Theory

Abstract

The Lieb—Mattis theorem about ordering of energy levels is generalized to frustrated antiferromagnetic spin-1/2 ladder model with diagonal and four-spin interaction.

Keywords

Atomic Nucleus Spin Ladder Ladder System Ladder Model Frustrate Spin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. H. Lieb and D. Mattis, J. Math. Phys. 3, 749 (1962); E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).zbMATHCrossRefADSGoogle Scholar
  2. 2.
    E. H. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962).zbMATHCrossRefADSGoogle Scholar
  3. 3.
    T. Xiang and N. d’Ambrumenil, Phys. Rev. B 46, R599, 11179 (1992).ADSGoogle Scholar
  4. 4.
    T. Hakobyan, Nucl. Phys. B 699, 575 (2004).zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    B. Nachtergaele, W. Spitzer, and Sh. Starr, J. Stat. Phys. 116, 719 (2004); B. Nachtergaele and Sh. Starr, Phys. Rev. Lett. 94, 057206 (2005).zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    E. H. Lieb and P. Schupp, Phys. Rev. Lett. 83, 5362 (1999); Physica A 279, 378 (2000).CrossRefADSGoogle Scholar
  7. 7.
    J. Richter, N. B. Ivanov, K. Retzlaff, and A. Voigt, J. Magn. Magn. Mater. 140-144, 1611 (1995); J. Richter, N. B. Ivanov, A. Voigt, and K. Retzlaff, J. Low Temp. Phys. 99, 363 (1995).Google Scholar
  8. 8.
    Y.-J. Liu, Y.-C. Chen, M.-F. Yang, and C.-D. Gong, Phys. Rev. B 66, 024403 (2002).CrossRefADSGoogle Scholar
  9. 9.
    J. Schnack, H.-J. Schmidt, J. Richter, and J. Schulenburg, Eur. Phys. J. B 24, 475 (2001); J. Schnack, Lecture Notes in Phys. 645, 155 (2004).CrossRefADSGoogle Scholar
  10. 10.
    E. Dagotto, Rep. Prog. Phys. 62, 1525 (1999); E. Dagotto and T. M. Rice, Science 271, 618 (1996).CrossRefADSGoogle Scholar
  11. 11.
    T. Hakobyan, Phys. Rev. B 75, 214421 (2007).CrossRefADSGoogle Scholar
  12. 12.
    T. Hakobyan, Phys. Rev. B 78, 012407 (2008).CrossRefADSGoogle Scholar
  13. 13.
    A. K. Kolezhuk and H.-J. Mikeska, Phys. Rev. B 56, R1 1380 (1997).CrossRefGoogle Scholar
  14. 14.
    S. Brehmer, H.-J. Mikeska, M. Müller, et al., Phys. Rev. B 60, 329 (1999); T. Hikihara, T. Momoi, and X. Hu, Phys. Rev. Lett. 90, 087204 (2003); V. Gritsev, B. Normand, and D. Baeriswyl, Phys. Rev. B 69, 094431 (2004); P. Lecheminant and K. Totsuka, Phys. Rev. B 74, 224426 (2006).CrossRefADSGoogle Scholar
  15. 15.
    F. D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    J. Solyom and J. Timonen, Phys. Rev. B 34, 487 (1986); 39, 7003 (1989); 40, 7150(1989).CrossRefADSGoogle Scholar
  17. 17.
    Y. Xian, Phys. Rev. B 52, 12485 (1995).CrossRefADSGoogle Scholar
  18. 18.
    J.-B. Fouet, F Mila, and D. Clarke, Phys. Rev. B 73, 214405 (2006).CrossRefADSGoogle Scholar
  19. 19.
    P. Lancaster, Theory of Matrices (Academic, New York, 1969).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Yerevan State UniversityYerevanArmenia

Personalised recommendations