Skip to main content
Log in

Monopoles and vortices in Yang-Mills plasma

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

We discuss the role of magnetic degrees of freedom in Yang-Mills plasma at temperatures above and of order of the critical temperature T c . While at zero temperature the magnetic degrees of freedom are condensed and electric degrees of freedom are confined, at the point of the phase transition both magnetic and electric degrees of freedom are released into the thermal vacuum. This phenomenon might explain the observed unusual properties of the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Nambu, Phys. Rev. D 10, 4262 (1974); G.’ t Hooft, in High Energy Physics, EPS Intern. Conf., Palermo, 1975, Ed. by A. Zichichi (Editrice Composition, Bologna, 1976); S. Mandelstam, Phys. Rep. 23, 245 (1976).

    Article  ADS  Google Scholar 

  2. A. M. Polyakov, Phys. Lett. B 59, 82 (1975); M. E. Peskin, Ann. Phys. (N.Y.) 113, 122 (1978); T. Banks, R. Myerson, and J. B. Kogut, Nucl. Phys. B 129, 493 (1977); H. Shiba and T. Suzuki, Phys. Lett. B 333, 461 (1994); hep-lat/9404015.

    Article  MathSciNet  ADS  Google Scholar 

  3. A.M. Polyakov, Gauge Fields and Strings (Harvard Acad. Publ., 1987); J. Ambjorn, in Proc. of the Fluctuating Geometries in Statistical Mechanics and Field Theory, Ed. by F. David, P. Ginsparg, and J. Zinn-Justin (North-Holland, Amsterdam, 1996), p. 77; hep-th/9411179.

  4. M. Stone and P. R. Thomas, Phys. Rev. Lett. 41, 351 (1978); M. N. Chernodub and V. I. Zakharov, Nucl. Phys. B 669, 233 (2003); hep-th/0211267.

    Article  MathSciNet  ADS  Google Scholar 

  5. M. N. Chernodub and V. I. Zakharov, Phys. Rev. Lett. 98, 082002 (2007); hep-ph/0611228.

    Article  ADS  Google Scholar 

  6. J. Liao and E. Shuryak, Phys. Rev. C 75, 054907 (2007); hep-ph/0611131.

    Article  ADS  Google Scholar 

  7. J. Liao and E. Shuryak, Phys. Rev. Lett. 101, 162302 (2008); arXiv: 0804.0255 [hep-ph].

    Article  ADS  Google Scholar 

  8. E. V. Shuryak, in Minneapolis 2006, Continuous Advances in QCD, p. 3 [hep-ph/0608177].

  9. G. ’t Hooft, Nucl. Phys. B 190, 455 (1981).

    Article  ADS  Google Scholar 

  10. G. S. Bali, V. Bornyakov, M. Müller-Preussker, and K. Schilling, Phys. Rev. D 54, 2863 (1996); heplat/9603012.

    Article  ADS  Google Scholar 

  11. T. Suzuki and I. Yotsuyanagi, Phys. Rev. D 42, 4257 (1990).

    Article  ADS  Google Scholar 

  12. V. Singh, D. A. Browne, and R. W. Haymaker, Phys. Lett. B 306, 115 (1993) [hep-lat/9301004].

    Article  ADS  Google Scholar 

  13. L. DelDebbio, A. Di Giacomo, G. Paffuti, and P. Pieri, Phys. Lett. B 355, 255 (1995); hep-lat/9505014; A. Di Giacomo and G. Paffuti, Phys. Rev. D 56, 6816 (1997); hep-lat/9707003; M. N. Chernodub, M. I. Polikarpov, and A. I. Veselov, Nucl. Phys. B (Proc. Suppl.) 49, 307 (1996); hep-lat/9512030; Phys. Lett. B 399, 267 (1997); hep-lat/9610007.

    Article  ADS  Google Scholar 

  14. S. Ejiri, S. I. Kitahara, Y. Matsubara, and T. Suzuki, Phys. Lett. B 343, 304 (1995); hep-lat/9407022.

    Article  ADS  Google Scholar 

  15. S. Ejiri, Phys. Lett. B 376, 163 (1996); heplat/9510027.

    Article  MathSciNet  ADS  Google Scholar 

  16. P. Giovannangeli and C. P. Korthals Altes, Nucl. Phys. B 608, 203 (2001); hep-ph/0102022; C. P. Korthals Altes, in Minneapolis 2006, Continuous Advances in QCD, p. 266; hep-ph/0607154.

    Article  MATH  ADS  Google Scholar 

  17. M. N. Chernodub, K. Ishiguro, and T. Suzuki, J. High Energy Phys. 0309, 027 (2003); hep-lat/0204003.

    Article  ADS  Google Scholar 

  18. A. D’Alessandro and M. D’Elia, Nucl. Phys. B 799, 241 (2008); arXiv: 0711.1266 [hep-lat].

    Article  MATH  ADS  Google Scholar 

  19. L. Del Debbio, M. Faber, J. Greensite, and Š. Olejník, Phys. Rev. D 55, 2298 (1997); hep-lat/9610005; L. Del Debbio, M. Faber, J. Giedt, et al., Phys. Rev. D 58, 094501 (1998); hep-lat/9801027.

    Article  ADS  Google Scholar 

  20. J. Greensite, Prog. Part. Nucl. Phys. 51, 1 (2003); hep-lat/0301023.

    Article  ADS  Google Scholar 

  21. V. I. Zakharov, AIP Conf. Proc. 756, 182 (2005); hepph/0501011.

    Article  ADS  Google Scholar 

  22. J. Ambjorn, J. Giedt, and J. Greensite, J.High Energy Phys. 0002, 033 (2000); hep-lat/9907021.

    Article  MathSciNet  ADS  Google Scholar 

  23. R. Auzzi, S. Bolognesi, J. Evslin, and K. Konishi, Nucl. Phys. B 686, 119 (2004); hep-th/0312233; D. Tong, Phys. Rev. D 69, 065003 (2004); hepth/0307302; A. Gorsky, M. Shifman, and A. Yung, Phys. Rev. D 71, 045010 (2005); hep-th/0412082; M. Shifman and A. Yung, Rev. Mod. Phys. 79, 1139 (2007); hep-th/0703267.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. J. M. Cornwall, Phys.Rev.D 58, 105028 (1998); hepth/9806007.

    Article  ADS  Google Scholar 

  25. M. N. Chernodub, R. Feldmann, E.-M. Ilgenfritz, and A. Schiller, Phys. Lett. B 605, 161 (2005); heplat/0406015.

    Article  ADS  Google Scholar 

  26. J. Engels, J. Fingberg, K. Redlich, et al., Z. Phys. C 42, 341 (1989).

    Article  Google Scholar 

  27. G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lutgemeier, and B. Petersson, Nucl. Phys. B 469, 419 (1996); hep-lat/9602007.

    Article  ADS  Google Scholar 

  28. B. L. G. Bakker, M. N. Chernodub, and M. I. Polikarpov, Phys. Rev. Lett. 80, 30 (1998); hep-lat/9706007.

    Article  ADS  Google Scholar 

  29. V. G. Bornyakov, M. N. Chernodub, F. V. Gubarev, et al., Phys. Lett. B 537, 291 (2002); hep-lat/0103032.

    Article  MATH  ADS  Google Scholar 

  30. M. N. Chernodub, K. Ishiguro, A. Nakamura, et al., PoS(LATTICE 2007), 174 (2007); arXiv: 0710.2547 [hep-lat].

  31. A. Gorsky and V. Zakharov, Phys. Rev. D 77, 045017 (2008); arXiv: 0707.1284 [hep-th].

    Article  ADS  Google Scholar 

  32. V. G. Bornyakov, V. K. Mitrjushkin, and M. Müller-Preussker, Phys. Lett. B 284, 99 (1992).

    Article  ADS  Google Scholar 

  33. H. R. Glyde, R. T. Azuah, and W. G. Stirling, Phys. Rev. B 62, 14337 (2000).

    Article  ADS  Google Scholar 

  34. Z. Fodor, PoS(LATTICE 2007) 011, arXiv: 0711.0336 [hep-lat].

  35. F. Karsch, PoS(LATTICE 2007) 015, arXiv:0711.0661 [hep-lat].

  36. T. Appelquist and R. D. Pisarski, Phys. Rev. D 23, 2305 (1981).

    Article  ADS  Google Scholar 

  37. A.M. Polyakov, Phys. Lett. B 72, 477 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  38. Ph. de Forcrand, A. Kurkela, and A. Vuorinen, Phys. Rev.D 77, 125014 (2008); arXiv: 0801.1566 [hep-ph].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Chernodub.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernodub, M.N., Zakharov, V.I. Monopoles and vortices in Yang-Mills plasma. Phys. Atom. Nuclei 72, 2136–2145 (2009). https://doi.org/10.1134/S106377880912014X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377880912014X

Keywords

Navigation