Skip to main content
Log in

Cluster models of light nuclei and the method of hyperspherical harmonics: Successes and challenges

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Hyperspherical-harmonics method to investigate the lightest nuclei having three-cluster structure is discussed together with recent experiments. Properties of bound states and methods to explore three-body continuum are presented. The challenges created by large neutron excess and halo phenomena are highlighted. Astrophysical aspects of the 7Li + n8Li + γ reaction and the solar-boron-neutrinos problem are analyzed. Three-cluster structure of highly excited states in 8Be is shown to be responsible for extreme isospin mixing. Progress in studies of 6He- and 11Li-induced inclusive and exclusive nuclear reactions is demonstrated, providing information on the nature of continuum structures of Borromean nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. V. Danilin, M. V. Zhukov, A. A. Korsheninnikov, and L. V. Chulkov, Sov. J. Nucl.Phys. 53, 45 (1991).

    Google Scholar 

  2. B.V. Danilin, M.V. Zhukov, S. N. Ershov, et al., Phys. Rev. C 43, 2835 (1991).

    Article  ADS  Google Scholar 

  3. M. V. Zhukov, B. V. Danilin, D. V. Fedorov, et al., Phys. Rep. 231, 151 (1993).

    Article  ADS  Google Scholar 

  4. A. A. Korsheninnikov, B. V. Danilin, and M. V. Zhukov, Nucl. Phys. A 559, 208 (1993).

    Article  ADS  Google Scholar 

  5. N. B. Shul’gina, B.V. Danilin, L. V. Grigorenko, et al., Phys. Rev. C 62, 014312 (2000).

    Google Scholar 

  6. L. V. Grigorenko, N. B. Shul’gina, and B. V. Danilin, Nucl. Phys. A 671, 136 (2000).

    Article  ADS  Google Scholar 

  7. N. B. Shul’gina, B. V. Danilin, V. D. Efros, J. M. Bang, J. S. Vaagen, and M. V. Zhukov, Nucl. Phys. A 597, 197 (1996).

    Article  ADS  Google Scholar 

  8. L. V. Grigorenko, B. V. Danilin, V. D. Efros, N. B. Shul’gina, and M. V. Zhukov, Phys. Rev. C 57, R2099 (1998).

    Article  ADS  Google Scholar 

  9. A. L. Barabanov, Yu. V. Gaponov, B. V. Danilin, and N. B. Shul’gina, Phys. At. Nucl. 59, 1871 (1996).

    Google Scholar 

  10. R. A. Malaney and W. A. Fowler, Astrophys. J. 333, 14 (1988).

    Article  ADS  Google Scholar 

  11. M. Wiescher et al., Astrophys. J. 344, 464 (1989); Y. Nagai et al., Astrophys. J. 381, 444 (1991).

    Article  ADS  Google Scholar 

  12. I. Tanihata, H. Hamagaki, O. Hashimoto, et al., Phys. Lett. B 160, 380 (1985).

    Article  ADS  Google Scholar 

  13. P. G. Hansen and B. Jonson, Europhys. Lett. 4, 409 (1987).

    Article  ADS  Google Scholar 

  14. V. M. Efimov, Comments Nucl. Part. Phys. 19, 271 (1990).

    Google Scholar 

  15. L. H. Thomas, Phys. Rev. 47, 903 (1935).

    Article  MATH  ADS  Google Scholar 

  16. L. V. Grigorenko, I. G. Mukha, and M. V. Zhukov, Nucl. Phys. A 713, 372 (2003); Nucl. Phys. A 740, 401 (2004); L. V. Grigorenko, and M. V. Zhukov, Phys. Rev. C 68, 054005 (2003).

    Article  ADS  Google Scholar 

  17. K. Miernik et al., Phys. Rev. Lett. 99, 192501 (2007); I. Mukha et al., Phys. Rev. C 77, 061303(R) (2008).

  18. T. Aumann et al., Phys. Rev. C 59, 1252 (1999).

    Article  ADS  Google Scholar 

  19. L. V. Chulkov et al., Nucl. Phys. A 759, 23 (2005).

    Article  ADS  Google Scholar 

  20. N. A. Orr, arXiv:0803.0886 [nucl-ex].

  21. K. Ieki et al., Phys. Rev. Lett. 70, 730 (1993); D. Sackett et al., Phys.Rev.C 48, 118 (1993).

    Article  ADS  Google Scholar 

  22. F. Shimoura et al., Phys. Lett. B 348, 29 (1995).

    Article  ADS  Google Scholar 

  23. M. Zinser et al., Nucl. Phys. A 619, 151 (1997).

    Article  ADS  Google Scholar 

  24. T. Nakamura et al., Phys. Rev. Lett. 96, 252502 (2006).

  25. H. Simon et al., Phys. Rev. Lett. 83, 496 (1999).

    Article  ADS  Google Scholar 

  26. J. Bang and C. Gignoux, Nucl. Phys. A 313, 119 (1979).

    Article  ADS  Google Scholar 

  27. V. I. Kukulin et al., Nucl. Phys. A 586, 151 (1995).

    Article  ADS  Google Scholar 

  28. S. Funada, H. Kameyama, and Y. Sakuragi, Nucl. Phys. A 575, 93 (1994).

    Article  ADS  Google Scholar 

  29. Yu.A. Lurie, A.M. Shirokov, and Yu.F. Smirnov, Rev. Mex. Fis. 40(Suppl. 1), 63 (1994); Yu. A. Lurie and A. M. Shirokov, Bull. Russ. Acad. Sci., Phys. Ser. 61, 1665 (1997).

    Google Scholar 

  30. D. V. Fedorov, A. S. Jensen, and K. Riisager, Phys. Rev. C 50, 2372 (1994).

    Article  ADS  Google Scholar 

  31. A. Csótó, Phys. Lett. B 315, 24 (1993); Phys. Rev. C 48, 165 (1993); 49, 3035, 2244 (1994).

    Article  ADS  Google Scholar 

  32. K. Arai, Y. Suzuki, and K. Varga, Phys. Rev. C 51, 2488 (1995).

    Article  ADS  Google Scholar 

  33. J. Wurzer and H.M. Hofmann, Phys. Rev.C 55, 688 (1997).

    Article  ADS  Google Scholar 

  34. G. F. Filippov, I. Yu. Rybkin, S. V. Korennov, and K. Kato, J.Math. Phys. 36, 4571 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. D. Baye, Y. Suzuki, and P. Descouvemont, Prog. Theor. Phys. 91, 271 (1994).

    Article  ADS  Google Scholar 

  36. S. Saito, Prog. Theor. Phys. 41, 705 (1969).

    Article  ADS  Google Scholar 

  37. D. Baye, Phys. Rev. Lett. 58, 2738 (1987).

    Article  ADS  Google Scholar 

  38. B. S. Pudliner et al., Phys. Rev. C 56, 1720 (1997); R. B. Wiringa, Nucl. Phys. A 631, 70c (1998).

    Article  ADS  Google Scholar 

  39. P. Navratil, J. P. Very, and B. R. Barrett, Phys. Rev. Lett. 84, 5728 (2000).

    Article  ADS  Google Scholar 

  40. T. Neff and H. Feldmeier, Eur. Phys. J., Special Topics 156, 69 (2008).

    Article  ADS  Google Scholar 

  41. F. Coester and H. Kümmel, Nucl. Phys. 17, 477 (1960); G. Hagen et al., Phys. Lett. B 656, 169 (2007); J. S. Vaagen et al., in Proc. of the Intern. School of Physics Enrico Fermi, Course CLXIX, Nuclear Structure far from Stability: New Physics and New Technology, Ed. by A. Covello, F. Iachello, R. A. Ricci, and G. Maino (IOS Press, Amsterdam, SIF, Bologna, 2008), p. 237.

    Article  MATH  Google Scholar 

  42. B. V. Danilin, Izv. Akad. Nauk SSSR, Ser. Fiz. 54, 2212 (1990).

    Google Scholar 

  43. B. V. Danilin and M. V. Zhukov, Phys. At. Nucl. 56, 460 (1993); B. V. Danilin, I. J. Thompson, M. V. Zhukov, and J. S. Vaagen, Nucl. Phys. A 632, 383 (1998).

    Google Scholar 

  44. E. Garrido, D. V. Fedorov, and A. S. Jensen, Nucl. Phys. A 617, 153 (1997).

    Article  ADS  Google Scholar 

  45. G. F. Filippov, Phys. At. Nucl. 62, 1164 (1999).

    Google Scholar 

  46. S. Aoyama, S. Mukai, K. Kato, and K. Ikeda, Prog. Theor. Phys. 93, 99 (1995); 94, 343 (1995); K. Kato, S. Aoyama, S. Mukai, and K. Ikeda, Nucl. Phys. A 588, 29c (1995).

    Article  ADS  Google Scholar 

  47. J. S. Al-Khalili, J. A. Tostevin, and I. J. Thompson, Phys. Rev. C 54, 1843 (1996); J. A. Tostevin and J. S. Al-Khalili, Nucl. Phys. A 616, 418c (1997).

    Article  ADS  Google Scholar 

  48. S.N. Ershov, T. Rogde, B.V. Danilin, et al., Phys. Rev. C 56, 1483 (1997).

    Article  ADS  Google Scholar 

  49. S. N. Ershov, B. V. Danilin, and J. S. Vaagen, Phys. Rev. C 64, 064609 (2001).

    Google Scholar 

  50. S. N. Ershov, B. V. Danilin, and J. S. Vaagen, Phys. Rev. C 74, 014603 (2006).

    Google Scholar 

  51. A. Csótó, Phys. Rev. C 48, 165 (1993); A. Csótó and G. M. Hale, Phys. Rev. C 55, 536 (1997).

    Article  ADS  Google Scholar 

  52. K. Arai, Y. Suzuki, and R. G. Lovas, Phys.Rev.C 59, 1432 (1999).

    Article  ADS  Google Scholar 

  53. I. J. Thompson, B. V. Danilin, V. D. Efros, et al., Phys.Rev. C 61, 024318 (2000).

    Google Scholar 

  54. B. V. Danilin, S. N. Ershov, and J. S. Vaagen, Phys.Rev. C 71, 057301 (2005).

    Google Scholar 

  55. L.-B. Wang et al., Phys. Rev. Lett. 93, 142501 (2004).

  56. L. V. Chulkov et al., Europhys. Lett. 8, 245 (1989).

    Article  ADS  Google Scholar 

  57. I. J. Thompson and M. V. Zhukov, Phys. Rev. C 49, 1904 (1994).

    Article  ADS  Google Scholar 

  58. M. Zinser et al., Phys. Rev. Lett. 75, 1719 (1995).

    Article  ADS  Google Scholar 

  59. M. Thoennessen, S. Yokoyama, A. Azhari, et al., Phys. Rev. C 59, 111 (1999).

    Article  ADS  Google Scholar 

  60. J. Wurzer, H.M. Hofmann, et al., Z. Phys. A 354, 135 (1996).

    ADS  Google Scholar 

  61. P. Descouvemont, Nucl. Phys. A 626, 647 (1997).

    Article  ADS  Google Scholar 

  62. N. A. Orr et al., Phys. Rev. Lett. 69, 2050 (1992).

    Article  ADS  Google Scholar 

  63. I. Tanihata, T. Kobayashi, O. Yamakawa, et al., Phys. Lett. B 206, 592 (1988).

    Article  ADS  Google Scholar 

  64. M. J. G. Borge et al., Phys. Rev. C 55, R8 (1997).

    Article  ADS  Google Scholar 

  65. A. I. Baz’ and S. P. Merkuriev, Theor.Math. Phys. 27, 336 (1976).

    Article  Google Scholar 

  66. A. I. Baz’, Zh.Éksp. Teor. Fiz. 70, 397 (1976) [Sov. Phys. JETP 43, 205 (1976)].

    Google Scholar 

  67. B. V. Danilin et al., Phys. Rev. C 69, 024609 (2004).

  68. B. V. Danilin, J. S. Vaagen, T. Rogde, S. N. Ershov, et al., Phys. Rev. C 73, 054002 (2006).

    Google Scholar 

  69. Yu. Ts. Oganessian, V. I. Zagrebaev, and J. S. Vaagen, Phys. Rev. C 60, 044605 (1999).

    Google Scholar 

  70. B. V. Danilin, J. S. Vaagen, T. Rogde, S. N. Ershov, et al., Phys. Rev. C 76, 064612 (2007).

    Google Scholar 

  71. A. A. Korsheninnikov et al., Phys. Rev. C 53, R537 (1996).

    Article  ADS  Google Scholar 

  72. H. G. Bohlen et al., Z. Phys. A 351, 7 (1995).

    Article  ADS  Google Scholar 

  73. S. N. Ershov, B. V. Danilin, and J. S. Vaagen, Phys. Rev. C 72, 044606 (2005).

    Google Scholar 

  74. A. A. Korsheninnikov et al., Phys. Rev. Lett. 78, 2317 (1997).

    Article  ADS  Google Scholar 

  75. R. Crespo, I. J. Thompson, and A. A. Korsheninnikov, Phys. Rev. C 66, 021002(R) (2002).

  76. S. N. Ershov, B. V. Danilin, J. S. Vaagen, et al., Phys. Rev. C 70, 054608 (2004).

    Google Scholar 

  77. M. V. Zhukov, L. V. Chulkov, D. V. Fedorov, et al., J. Phys. G 20, 201 (1994).

    Article  ADS  Google Scholar 

  78. S. N. Ershov, B. V. Danilin, T. Rogde, and J. S. Vaagen, Phys. Rev. Lett. 82, 908 (1999).

    Article  ADS  Google Scholar 

  79. V. D. Efros and J. M. Bang, Eur. Phys. J. A 4, 33 (1999).

    Article  ADS  Google Scholar 

  80. I. Tanihata et al., Phys. Lett. B 289, 261 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to S. N. Ershov.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilin, B.V., Shul’gina, N.B., Ershov, S.N. et al. Cluster models of light nuclei and the method of hyperspherical harmonics: Successes and challenges. Phys. Atom. Nuclei 72, 1272–1284 (2009). https://doi.org/10.1134/S1063778809080043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778809080043

PACS numbers

Navigation