Advertisement

Physics of Atomic Nuclei

, Volume 72, Issue 5, pp 744–751 | Cite as

Is it possible to estimate the Higgs mass from the CMB power spectrum?

  • A. B. Arbuzov
  • B. M. Barbashov
  • A. Borowiec
  • V. N. Pervushin
  • S. A. Shuvalov
  • A. F. Zakharov
Elementary Particles and Fields Theory

Abstract

General Relativity and Standard Model are considered as a theory of dynamical scale symmetry with definite initial data compatible with the accepted Higgs mechanism. In this theory the Early Universe behaves like a factory of electroweak bosons and Higgs scalars, and it gives a possibility to identify three peaks in the Cosmic Microwave Background power spectrum with the contributions of photonic decays and annihilation processes of primordial Higgs, W and Z bosons in agreement with the QED coupling constant, Weinberg’s angle, and Higgs’ particle mass of about 118 GeV.

PACS numbers

95.30.Sf 98.80.-k 98.80.Es 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. N. Spergel et al., Asrophys. J. Suppl. 148, 175 (2003).CrossRefADSGoogle Scholar
  2. 2.
    M. Giovannini, Int. J. Mod. Phys. D 14, 363 (2005).zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    E. P. Wigner, Ann. Math. 40, 149 (1939).CrossRefMathSciNetGoogle Scholar
  4. 4.
    A. B. Borisov and V. I. Ogievetsky, Teor. Mat. Fiz. 21, 329 (1974) [Sov. J. Theor. Math. Phys. 21, 1179 (1974)]; M. K. Volkov and V. N. Pervushin, Essentially Nonlinear Field Theory, Dynamical Symmetry and Pion Physics, Ed. by D. I. Blokhintsev (Atomizdat, Moscow, 1979) [in Russian]; G. V. Isaev, V. N. Pervushin, and S. V. Pushkin, J. Phys. A 12, 1499 (1979).Google Scholar
  5. 5.
    H. Weyl, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) (1918), p. 465.Google Scholar
  6. 6.
    P. A. M. Dirac, Proc. R. Soc. London, Ser. A 333, 403 (1973).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    M. Pawlowski and R. Raczka, Found. Phys. 24, 1305 (1994); M. Pawlowski et al., Phys. Lett. B 444, 293 (1998).CrossRefADSGoogle Scholar
  8. 8.
    A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), No. 1, 142 (1917).Google Scholar
  9. 9.
    D. Behnke et al., Phys. Lett. B 530, 20 (2002).zbMATHCrossRefADSGoogle Scholar
  10. 10.
    D. Behnke, PhD Thesis, Rostock Report MPG-VTUR 248/04 (2004).Google Scholar
  11. 11.
    A. F. Zakharov,A. A. Zakharova, and V. N. Pervushin, astro-ph/0611657.Google Scholar
  12. 12.
    V. Pervushin, Acta Phys. Slovakia 53, 237 (2003); D. B. Blaschke et al., Phys. At. Nucl. 67, 1050 (2004).Google Scholar
  13. 13.
    B. M. Barbashov et al., Phys. Lett. B 633, 458 (2006).CrossRefADSGoogle Scholar
  14. 14.
    B. M. Barbashov et al., Int. J. Mod. Phys. A 21, 5957 (2006); Int. J. Geom. Meth. Mod. Phys. 4, 171 (2007).zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    V. N. Pervushin and V. A. Zinchuk, Phys. At. Nucl. 70, 593 (2007); gr-qc/0601067.CrossRefGoogle Scholar
  16. 16.
    L. A. Glinka and V. N. Pervushin, Concepts Phys. 5, 31 (2008).CrossRefGoogle Scholar
  17. 17.
    A. G. Riess et al., Astron. J. 116, 1009 (1998); S. Perlmutter et al., Astrophys. J. 517, 565 (1999).CrossRefADSGoogle Scholar
  18. 18.
    A. D. Riess, L.-G. Strolger, J. Tonry, et al., Astrophys. J. 607, 665 (2004).CrossRefADSGoogle Scholar
  19. 19.
    J. Dunkley et al., arXiv:0803.0586 [astro-ph]; G. Hinshaw et al., arXiv:0803.0732 [astro-ph].Google Scholar
  20. 20.
    P. A. M. Dirac, Proc. R. Soc. London Ser. A 246, 333 (1958); Phys. Rev. 114, 924 (1959).zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    A. Lichnerowicz, J. Math. Pure Appl. B 37, 23 (1944); J. W. York, Jr., Phys. Rev. Lett. 26, 1656 (1971); K. Kuchar, J. Math. Phys. 13, 768 (1972).MathSciNetGoogle Scholar
  22. 22.
    R. H. Cyburt et al., Phys. Lett. B 567, 227 (2003); K. A. Olive, G. Steigman, and T. P. Walker, Phys. Rep. 333, 389 (2000).CrossRefADSGoogle Scholar
  23. 23.
    S. A. Smolyansky et al., in Proc. of the Conf. on Progress in Nonequilibrium Green’s Functions, Dresden, Germany, 19–23 Aug. 2002, Ed. by M. Bonitz and D. Semkat (World Sci., New Jersey, London, Singapore, Hong Kong, 2002).Google Scholar
  24. 24.
    J. Bernstein, Kinetic Theory in the Expanding Universe (Cambridge Univ., Cambridge, 1985).Google Scholar
  25. 25.
    M. E. Shaposhnikov, Nucl. Phys. B 287, 757 (1987); V. A. Matveev et al., Usp. Fiz. Nauk 156, 253 (1988) [Sov. Phys. Usp. 31, 916 (1988)]; V. A. Rubakov and M. E. Shaposhnikov, Usp. Fiz. Nauk 166, 493 (1996) [Phys. Usp. 39, 461 (1996)].CrossRefADSGoogle Scholar
  26. 26.
    W. Hu and S. Dodelson, Ann. Rev. Astron. Astrophys. 40, 171 (2002).CrossRefADSGoogle Scholar
  27. 27.
    J. F. Gunion et al., The Higgs Hunter’s Guide (Perseus Publ., Cambridge, 2000).Google Scholar
  28. 28.
    A. D. Sakharov, JETP Lett. 5, 27 (1967).ADSGoogle Scholar
  29. 29.
    L. B. Okun, Leptons and Quarks (North-Holland, Amsterdam, 1982).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. B. Arbuzov
    • 1
  • B. M. Barbashov
    • 1
  • A. Borowiec
    • 2
  • V. N. Pervushin
    • 1
  • S. A. Shuvalov
    • 3
  • A. F. Zakharov
    • 4
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Institute of Theoretical PhysicsUniversity of WrocławWrocławPoland
  3. 3.Russian Peoples Friendship UniversityMoscowRussia
  4. 4.Institute of Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations