Skip to main content
Log in

Azimuthal anisotropy and formation of an extreme state of strongly interacting matter at the relativistic heavy-ion collider (RHIC)

  • Elementary Particles and Fields
  • Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Experimental results obtained by studying the azimuthal anisotropy of final states in nucleus-nucleus interactions at the energies of the relativistic heavy-ion collider (RHIC) are systematized. The medium is found to exhibit a pronounced collective behavior, which is likely to be formed at an early, parton, stage of the spacetime evolution of product hot and dense matter. Experimental data on the azimuthal anisotropy indicate that strongly interacting matter produced in the final state under extreme conditions behaves as a nearly ideal liquid rather than an ideal gas of quarks and gluons. The experimentally observed suppression of high-transverse-momentum jets and substantial modification of jetlike azimuthal correlations in heavy-ion collisions suggest that the energy loss of partons propagating in high-temperature matter featuring a high density of color charges is extremely large. The dependence of the amount of hardjet suppression in nucleus-nucleus collisions on the orientation of a jet with respect to the reaction plane was first discovered experimentally at RHIC. A strong suppression of the production of high-transverse-momentum particles and jets at RHIC is a unique phenomenon, which was discovered experimentally at lower energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Harrison, T. Ludlam, and S. Ozaki, Nucl. Instrum. Methods Phys. Res. A 499, 235 (2003).

    Article  ADS  Google Scholar 

  2. T. Ludlam, Nucl. Instrum. Methods Phys. Res. A 499, 428 (2003).

    Article  ADS  Google Scholar 

  3. L. D. Landau, Izv. AN SSSR, Ser. Fiz. 17, 51 (1953).

    Google Scholar 

  4. STAR Collab. (J. Adams et al.), Phys. Rev. Lett. 92, 062301 (2004).

  5. STAR Collab. (J. Adams et al.), Phys. Rev. C 72, 014904 (2005).

  6. STAR Collab. (J. Adams et al.), Phys. Rev. C 73, 034903 (2006).

  7. PHOBOSCollab. (B. B. Back et al.), Phys. Rev.Lett. 97, 012301 (2006).

  8. NA49 Collab. (C. Alt et al.), Phys. Rev. C 68, 034903 (2003).

  9. J. Brachmann et al., Phys. Rev. C 61, 024909 (2000).

  10. M. Bleicher and H. Stöcker, Phys. Lett. B 526, 309 (2002).

    Article  ADS  Google Scholar 

  11. STAR Collab. (J. Adams et al.), Nucl. Phys. A 757, 102 (2005).

    Article  ADS  Google Scholar 

  12. PHENIX Collab. (K. Adcox et al.), Nucl. Phys.A 757, 184 (2005).

    Article  ADS  Google Scholar 

  13. R. A. Lacey and PHENIX Collab., Nucl. Phys. A 698, 559c (2002).

    Article  ADS  Google Scholar 

  14. STAR Collab. (C. Adler et al.), Phys. Rev. C 66, 034904 (2002).

  15. R. Stock, J. Phys. G 30, S633 (2004).

    Article  ADS  Google Scholar 

  16. PHOBOS Collab. (B. B. Back et al.), Phys. Rev.Lett. 94, 122303 (2005).

  17. STAR Collab. (B. I. Abelev et al.), nucl-ex/0701010.

  18. P. F. Kolb, J. Sollfrank, and U. Heinz, Phys. Rev. C 62, 054909 (2000).

    Google Scholar 

  19. PHENIX Collab. (K. Adcox et al.), Phys. Rev. Lett. 89, 212301 (2002).

  20. PHOBOS Collab. (B. Alver et al.), Phys. Rev. Lett. 98, 242302 (2007).

    Google Scholar 

  21. PHENIX Collab. (A. Adare et al.), Phys. Rev. Lett. 98, 162301 (2007).

  22. H. Ito and BRAHMS Collab., Nucl. Phys. A 774, 519 (2006).

    Article  Google Scholar 

  23. L.-W. Chen and C. M. Ko, Phys. Lett. B 634, 205 (2006).

    Article  ADS  Google Scholar 

  24. T. Hirano, Nucl. Phys. A 774, 531 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  25. C. M. Ko and L.-W. Chen, Nucl. Phys. A 774, 527 (2006).

    Article  ADS  Google Scholar 

  26. P. F. Kolb and U. Heinz, nucl-th/0305084.

  27. PHENIX Collab. (S. S. Adler et al.), Phys.Rev. Lett. 94, 232302 (2005).

  28. STAR Collab. (C. Adler et al.), Phys. Rev. Lett. 90, 032301 (2003).

    Google Scholar 

  29. PHENIX Collab. (S. S. Adler et al.), Phys.Rev. Lett. 96, 032302 (2006).

  30. STAR Collab. (J. Adams et al.), Phys. Rev. Lett. 95, 122301 (2005).

  31. PHENIX Collab. (S. Afanasiev et al.), Phys. Rev. Lett. 99, 052301 (2007).

  32. STAR Collab. (B. I. Abelev et al.), Phys. Rev. Lett. 99, 112301 (2007).

  33. P. K. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett. 94, 111601 (2005).

    Google Scholar 

  34. PHENIX Collab. (S. S. Adler et al.), Phys.Rev. C 72, 024901 (2005).

  35. PHENIX Collab. (A. Adare et al.), Phys. Rev. Lett. 98, 172301 (2007).

  36. M. Asakawa et al., Phys. Rev. Lett. 96, 252301 (2006).

  37. STAR Collab. (J. Adams et al.), Phys. Rev. Lett. 93, 252301 (2004).

  38. X.-N. Wang, Nucl. Phys. A 750, 98 (2005).

    Article  ADS  Google Scholar 

  39. P. F. Kolb, Phys. Rev. C 68, 031902(R) (2003).

  40. BRAHMS Collab. (I. Arsene et al.), Nucl. Phys. A 757, 1 (2005).

    Article  Google Scholar 

  41. PHOBOS Collab. (B. B. Back et al.), Nucl. Phys. A 757, 28 (2005).

    Article  ADS  Google Scholar 

  42. STAR Collab. (C. Adler et al.), Phys. Rev. Lett. 90, 082302 (2003).

    Google Scholar 

  43. M. Gyulassy, I. Vitev, and X.-N. Wang, Phys. Rev. Lett. 86, 2537 (2001).

    Article  ADS  Google Scholar 

  44. I. Vitev and M. Gyulassy, Phys. Rev. Lett. 89, 252301 (2002).

    Google Scholar 

  45. X.-N. Wang, Phys. Lett. B 595, 165 (2004).

    Article  ADS  Google Scholar 

  46. STAR Collab. (J. Adams et al.), Phys. Rev. Lett. 91, 072304 (2003).

  47. PHENIX Collab. (S. S. Adler et al.), Phys.Rev. Lett. 96, 222301 (2006).

  48. STAR Collab. (J. Adams et al.), Phys. Rev. Lett. 97, 162301 (2006).

  49. PHENIX Collab. (A. Adare et al.), Phys. Rev. Lett. 98, 232302 (2007).

  50. STAR Collab. (J. Adams et al.), Phys. Rev. Lett. 95, 152301 (2005).

  51. A. Mischke (for the STAR Collab.), J. Phys. Conf. Ser. 50, 127 (2006).

    Article  Google Scholar 

  52. PHENIX Collab. (S. S. Adler et al.), Phys.Rev. Lett. 97, 052301 (2006).

  53. W. Scheid, H. Müller, and W. Greiner, Phys. Rev. Lett. 32, 741 (1974).

    Article  Google Scholar 

  54. A. K. Chaudhuri and U. Heinz, Phys. Rev. Lett. 97, 062301 (2006).

    Google Scholar 

  55. T. Renk and J. Ruppert, Phys. Rev. C 73, 011901 (2006).

  56. J. Stachel, J. Phys. Conf. Ser. 50, 293 (2006).

    Article  Google Scholar 

  57. I. M. Dremin, Pis’ma Zh. Éksp. Teor. Fiz. 30, 152 (1979) [JETP Lett. 30, 140 (1979)]; Yad. Fiz. 33, 1357 (1981) [Sov. J. Nucl. Phys. 33, 726 (1981)].

    Google Scholar 

  58. I. M. Dremin, Nucl. Phys. A 767, 233 (2006); 785, 365 (2007).

    Article  ADS  Google Scholar 

  59. A. Majumder and X.-N. Wang, Phys. Rev. C 73, 051901(R) (2006).

  60. I. Vitev, Phys. Lett. B 630, 78 (2005).

    Article  ADS  Google Scholar 

  61. N. Armesto, C. A. Salgado, and U. A. Wiedemann, Phys. Rev. Lett. 93, 242301 (2004).

    Google Scholar 

  62. CERES Collab. (G. Agakichiev et al.), Phys. Rev. Lett. 92, 032301 (2004).

  63. PHENIX Collab. (S. S. Adler et al.), Phys. Rev. C 76, 034904 (2007).

  64. V. A. Okorokov and K. V. Filimonov, in Proceedings of the VIII International Workshop on Relativistic Nuclear Physics: from Hundreds MeV to TeV, Dubna, 2005 (JINR, Dubna, 2006), p. 165.

    Google Scholar 

  65. V. A. Okorokov, nucl-th/0611005 (2006).

  66. V. A. Okorokov, Candidate’s Dissertation in Mathematics and Physics (Mosc. Inzh. Fiz. Inst., Moscow, 1996).

    Google Scholar 

  67. J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992); 48, 1132 (1993).

    Article  ADS  Google Scholar 

  68. S. Voloshin and Y. Zhang, Z. Phys. C 70, 665 (1996).

    Article  Google Scholar 

  69. A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998).

    Article  Google Scholar 

  70. R. S. Bhalerao, N. Borghini, and J.-Y. Ollitrault, Nucl. Phys. A 727, 373 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Okorokov.

Additional information

Original Russian Text © V.A. Okorokov, 2009, published in Yadernaya Fizika, 2009, Vol. 72, No. 1, pp. 155–168.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okorokov, V.A. Azimuthal anisotropy and formation of an extreme state of strongly interacting matter at the relativistic heavy-ion collider (RHIC). Phys. Atom. Nuclei 72, 147–160 (2009). https://doi.org/10.1134/S1063778809010177

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778809010177

PACS numbers

Navigation