Skip to main content
Log in

Precision measurement of the rate of nuclear muon capture in the muonic hydrogen atom and the determination of the pseudoscalar form factor of the nucleon

  • Nuclei
  • Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The rate Λ S of nuclear muon capture by a proton from the hyperfine singlet ground state of the µp atom has been measured using a new experimental method based on a time-projection chamber operating in an ultrapure hydrogen gas at a pressure of 10 atm. The capture rate has been determined from the difference between the measured lifetime of the negative muon in hydrogen and the world average lifetime of the positive muon. The analysis of 10% of the collected statistics (2 × 1010) of µe decays yields the muon capture rate Λ S = 725.0 ± 17.4 s−1, from which the pseudoscalar form factor of the nucleon, g P (q 2 c = −0.88m 2µ ) = 7.3 ± 1.1, is determined. The further analysis of the collected experimental data should improve the precision of this measurement by a factor of 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Czarnecki, W. J. Marciano, and A. Sirlin, Phys. Rev. Lett. 99, 032003 (2007).

    Google Scholar 

  2. Particle Data Group, Phys. Rev. D 66, 010001-114 (2002).

    Google Scholar 

  3. N. Kaiser, Phys. Rev. C 67, 027002 (2003).

    Google Scholar 

  4. V. Bernard, L. Elouadrhiri, and U.-G. Meissner, J. Phys. G 28, R1 (2002).

    Article  ADS  Google Scholar 

  5. J. Govaerts and J.-L. Lucio-Martinez, Nucl. Phys. A 678, 110 (2000).

    Article  ADS  Google Scholar 

  6. Tim Gorringe and Harold W. Fearing, Rev. Mod. Phys. 76, 31 (2004).

    Article  ADS  Google Scholar 

  7. R. Hildebrand, Phys. Rev. Lett. 8, 34 (1962).

    Article  ADS  Google Scholar 

  8. E. J. Bleser et al., Phys. Rev. Lett. 8, 288 (1962).

    Article  ADS  Google Scholar 

  9. E. Bertoloni et al., in Proceedings of the International Conference on High-Energy Physics, Geneva, 1962.

  10. J. E. Rothberg et al., Phys. Rev. 132, 2664 (1963).

    Article  ADS  Google Scholar 

  11. A. Alberigi Quaranta et al., Phys. Rev. 177, 2118 (1969).

    Article  ADS  Google Scholar 

  12. V. M. Bystrickiĭ et al., Zh. Éksp. Teor. Fiz. 66, 43 (1974) [Sov. Phys. JETP 39, 19 (1974)].

    Google Scholar 

  13. G. Bardin et al., Nucl. Phys. A 352, 365 (1981).

    Article  ADS  Google Scholar 

  14. G. Bardin et al., Phys. Lett. B 104, 320 (1981).

    Article  ADS  Google Scholar 

  15. J. H. D. Clark et al., Phys. Rev. Lett. 96, 073401 (2006).

  16. D. D. Bakalov, M. P. Faifman, L. I. Ponomarev, and S. I. Vinitsky, Nucl. Phys. A 384, 302 (1982).

    Article  ADS  Google Scholar 

  17. D. H. Wright et al., Phys. Rev. C 57, 373 (1998)

    Article  Google Scholar 

  18. A. A. Vorobyev, Vestn. Ross. Akad. Nauk 75, 512 (2005).

    Google Scholar 

  19. E. M. Maev et al., Nucl. Intrum. Methods Phys. Res. A 478, 158 (2002).

    Article  ADS  Google Scholar 

  20. E. M. Maev et al., Nucl. Intrum. Methods Phys. Res. A 515, 288 (2003).

    Article  ADS  Google Scholar 

  21. E. M. Maev et al., Hyperfine Interact. 138, 451 (2001).

    Article  ADS  Google Scholar 

  22. V. A. Ganzha et al., Nucl. Instrum. Methods Phys. Res. A 578, 4851 (2007).

    Article  Google Scholar 

  23. I. A. Alekseev et al., Preprint No. 2702 PNPI (Gatchina, 2006).

  24. V. A. Andreev et al., Phys. Rev. Lett. 99, 0322002 (2007).

  25. D. B. Chitwood et al., Phys. Rev. Lett. 99, 0322001 (2007).

  26. H. Uberall, Phys. Rev., 119, 365 (1960).

    Article  ADS  Google Scholar 

  27. H. C. Von Bayer and D. Leiter, Phys. Rev. A 19, 1371 (1979).

    Article  ADS  Google Scholar 

  28. R. Goldman, Nucl. Phys. B 49, 621 (1972).

    Article  ADS  Google Scholar 

  29. D. V. Balin et al., in Proceedings of the XV European Conference on Few-Body Problems in Physics, Peniscola, Spain, June 5–9, 1995, Suppl. 8, Ed. by R. Guardiola (Springer, Wien, New York, 1995), p. 248.

    Google Scholar 

  30. P. Ackerbauer et al., Phys. Lett. B 417, 224 (1998).

    Article  Google Scholar 

  31. J. G. Congleton and E. Truhlix, Phys. Rev. C 53, 956 (1996).

    Article  ADS  Google Scholar 

  32. L. E. Marcucci et al., Phys. Rev. C 66, 054003 (2002).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Vorobyov, 2009, published in Yadernaya Fizika, 2009, Vol. 72, No. 1, pp. 135–148

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorobyov, A.A. Precision measurement of the rate of nuclear muon capture in the muonic hydrogen atom and the determination of the pseudoscalar form factor of the nucleon. Phys. Atom. Nuclei 72, 128–140 (2009). https://doi.org/10.1134/S1063778809010153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778809010153

PACS numbers

Navigation