Skip to main content
Log in

Pion program for the future rare-decay experiments

  • Elementary Particles and Fields
  • Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The future investigations of rare decays of elementary particles demand the creation of new-generation setups which can perform much greater statistics and precise experimental data. The proposed new setups at CERN, NA62 (NA48/3 (P326SPS)), and at IHEP, OKA, are planned to obtain experimental data at the level of 10−10–10−12 branching ratio. The main goals of both experimental programs are connected with the study of ultrarare kaon decays, but beams of these experiments contain 95% (NA48) and 50% (OKA) of pions. It is natural to use the pion part of these beams for study of rare pion decays. The pion program may be performed simultaneously or consecutively with the main tasks. Such problems as search for tensor interaction, measurements of branching ratio and form factors of some pion decays, effects of polarization, and search for new particles are included in this program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Preprint CERN-SPSC-P-326-013, SPSC-P-326, 116 (2005).

  2. V. F. Obraztsov and L. G. Landsberg, Nucl. Phys. B Proc. Suppl. 99, 257 (2001).

    Article  ADS  Google Scholar 

  3. V. N. Bolotov et al., Preprint 95-111 Inst. High Energy Phys. (Protvino, 1995).

  4. E. Frlez (for the PIBETA Collab.), The 4th International Workshop on Chiral Dynamics, Bonn, 2003, http://pibeta.web.psi.ch; The PIBETA Experiment: Ann. Progress Rep. (Nov. 2002); D. Pocanic, hep-ex/0311013v2.

  5. A. Bay et al., Phys. Lett. B 174, 445 (1986).

    Article  ADS  Google Scholar 

  6. L. E. Philonen et al., Phys. Rev. Lett. 57, 1402 (1986).

    Article  ADS  Google Scholar 

  7. V. N. Bolotov et al., Phys. Lett. B 243, 308 (1990).

    Article  ADS  Google Scholar 

  8. G. Bressi et al., Nucl. Phys. B 513, 355 (1998); C. Castagnoli et al., Phys. Rev. 112, 1779 (1958).

    Article  Google Scholar 

  9. D. Pocanic et al., hep-ex/0312030; W. K. McFarlane et al., Phys. Rev. D 32, 547 (1985).

    Article  ADS  Google Scholar 

  10. S. Egli et al., Phys. Lett. B 222, 533 (1989).

    Article  ADS  Google Scholar 

  11. P. Depommier et al., Phys. Lett. 5, 61 (1963).

    Article  ADS  Google Scholar 

  12. A. Stetz et al., Nucl. Phys. B 138, 285 (1978).

    Article  ADS  Google Scholar 

  13. A. Poblaguev, Phys. Lett. B 238, 108 (1990).

    Article  ADS  Google Scholar 

  14. M. V. Chizhov, Mod. Phys. Lett. A 8, 2753 (1993); M. V. Chizhov, Part. Nucl. 26, 1323 (1995).

    Article  ADS  Google Scholar 

  15. A. V. Chernyshev et al., Mod. Phys. Lett. A 12, 1673 (1997).

    Article  ADS  Google Scholar 

  16. V. N. Bolotov et al., Preprint INR-0996/98 (Moscow, 1998).

  17. D. Grasso et al., Phys. Rev. 49, 5824 (1994).

    ADS  Google Scholar 

  18. F. Reines et al., Phys. Rev. Lett. 37, 315 (1976); A. Kyuldjiev, Nucl. Phys. B 243, 387 (1984).

    Article  ADS  Google Scholar 

  19. H. Groth and R. Robinett, Z. Phys. C 39, 553 (1988).

    Article  ADS  Google Scholar 

  20. D. Bryman et al., Phys. Rev. Lett. 50, 1546 (1983).

    Article  ADS  Google Scholar 

  21. F. Bezrukov and D. Gorbunov, Phys. Rev. D 66, 054012 (2002); hep-ph/0205158; hep-ph/0205338.

  22. M. Smoes, Nucl. Phys. B 20, 237 (1970).

    Article  ADS  Google Scholar 

  23. A. Kersh and F. Scheck, Nucl. Phys. B 263, 475 (1986).

    Article  ADS  Google Scholar 

  24. S. Benerjee et al., Phys. Lett. B 305, 182 (1993); A. Belogianni et al., CERN PPE/96-145 (1996); J. Aubert et al., Phys. Lett. B 218, 248 (1989); P. Chliapnikov et al., Phys. Lett. B 141, 276 (1984).

    Article  ADS  Google Scholar 

  25. C. Castagnoli and M. Muchnik, Phys. Rev. 112, 1779 (1958).

    Article  ADS  Google Scholar 

  26. G. Bressi et al., Nucl. Phys. B 513, 555 (1998).

    Article  Google Scholar 

  27. S. Glashow and M. Manohar, Phys. Rev. Lett. 54, 2306 (1985); T. Goldman, E. Kolb, and G. Stephenson, Phys. Rev. D 26, 2503 (1982); V. Barger,W. Keung, and S. Pakvas, Phys. Rev. D 25, 907 (1982).

    Article  ADS  Google Scholar 

  28. S. Raby and G. West, Phys. Rev. D 38, 3488 (1988).

    Article  ADS  Google Scholar 

  29. J. Ellis, M. Gaillard, and D. Nanjpoulos, Nucl. Phys. B 106, 292 (1976).

    ADS  Google Scholar 

  30. V. Barger, W. Y. Keung, and S. Pakvasa, Phys. Rev. D 25,3, 907 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Bolotov.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolotov, V.N., Duk, V.A. Pion program for the future rare-decay experiments. Phys. Atom. Nuclei 72, 63–76 (2009). https://doi.org/10.1134/S1063778809010098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778809010098

PACS numbers

Navigation